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Abstract. The detection of neutrinos emitted in the CNO reactions in the Sun is one of the
ambitious goals of Borexino Phase-II. A measurement of CNO neutrinos would be a milestone
in astrophysics, and would allow to solve serious issues in current solar models. A precise
measurement of the rate of neutrinos from the pep reaction would allow to investigate neutrino
oscillations in the MSW transition region. The pep and CNO solar neutrino physics, the
measurement in Borexino Phase-I and the perspectives for the new phase are reviewed in this
proceeding.

1. Introduction
Borexino is a real-time solar neutrino detector that is designed to detect low energy solar
neutrinos [1, 2]. The motivating goal of low energy solar neutrino detection experiments is
to directly probe the nuclear reaction processes in the Sun, and explore neutrino oscillations
over a broader range of energies than has been done to date.

Mono-energetic (1.44 MeV) pep solar neutrinos, produced in the pp fusion chain, are an ideal
probe to test the transition from vacuum-dominated oscillation to matter-enhanced oscillations
predicted by the MSW-LMA model of the neutrino oscillations: the flux of pep predicted by from
the Standard Solar Model has a small uncertainty (1.2%) due to the solar luminosity constraint.
The detection of neutrinos resulting from the CNO cycle would have huge implications in
astrophysics: it would be the first direct evidence of the nuclear processes that are believed
to fuel massive stars (>1.5 M�). Furthermore, a measurement of the CNO neutrino flux may
resolve the solar metallicity problem [3]. The total CNO flux is strongly dependent on the
inputs to the solar modelling, being 40% higher in the High Metallicity (GS98) than in the Low
Metallicity (AGSS09) solar model [3].

2. The Borexino detector
The features of the Borexino detector are described in detail in [1]. One of the unique features
of the Borexino detector is the very low radioactive background. The active detector is 278 tons
of two-component liquid scintillator composed of pseudocumene (PC) and 2,5-diphenyloxazole
(PPO), a wavelength shifter. The scintillator is contained in a thin nylon vessel, shielded by
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two PC buffers separated by a second nylon vessel. The scintillator and buffers are contained
within a 13.7 m stainless steel sphere that is housed in a 16.9 m domed water tank for additional
shielding and muon veto [4].

Neutrinos are detected by their elastic scattering on electrons in the liquid scintillator. The
scintillation light is detected with an array of 2200 photomultiplier tubes mounted on the inside
surface of the stainless steel sphere. The number of photomultipliers hit is a measure of the
energy imparted to the electron, but has no sensitivity to the direction of the neutrino.

Borexino is in data taking since May 2007. Borexino Phase-I covers the period from May
2007 to May 2010. After the purification of the scintillator performed between May 2010 and
August 2011, in November 2011 the Phase-II of Borexino started. Borexino Phase-II is expected
to last until 2016, before the begining of SOX [5].

Borexino Phase-I solar neutrino results, described in detail in [2], include a high-precision
measurement of 7Be neutrinos [6], the measurement of the absence of day-night asymmetry
of 7Be neutrinos [7], a measurement of 8B solar neutrinos with a threshold recoil electron
energy of 3 MeV [8], and the first time measurement of pep solar neutrinos and the strongest
constraint up to date on CNO solar neutrinos [9]. Other results include the study of solar
and other unknown anti-neutrino fluxes [10], observation of geo-neutrinos [11, 12], measurement
of neutrino velocity [13], searches for solar axions [14], and experimental limits on the Pauli-
forbidden transitions in 12C nuclei [15].

The direct real-time measurement of the solar neutrinos from the fundamental pp reaction [16]
is the greatest achievement so far of Borexino Phase-II.

3. First evidence of pep solar neutrinos and limits on CNO solar neutrino flux
The Borexino collaboration reported in 2012 the first time measurement of the solar pep neutrino
rate and the strongest limits on the CNO solar neutrino flux to date [9]. This measurement has
been made possible by the combination of the low levels of intrinsic background in Borexino-I,
and the implementation of novel background discrimination techniques.

The detection of pep and CNO solar neutrinos is challenging: their expected interaction
rates are a few counts per day in a 100 ton target, and the main backgrounds, the cosmogenic
β+-emitter 11C and radiogenic 210Bi, are one order of magnitude more intense [9].

11C is produced in the scintillator by cosmic muon interactions with 12C nuclei. In 95% of
the cases at least one free neutron is created in the 11C spallation process and then captured in
the scintillator [4, 17, 18]. The 11C background can be reduced by applying a space and time
veto after coincidences between signals from the muons and the cosmogenic neutrons, discarding
exposure that is more likely to contain 11C due to the correlation between the parent muon,
the neutron and the subsequent 11C decay (the Three-Fold-Coincidence, TFC). The rejection
criteria were chosen to obtain the best compromise between 11C rejection and preservation of
exposure [2, 9].

The residual 11C surviving the TFC cut is still a significant background. The pulse shape
differences between e− and e+ were used to discriminate 11C β+ decays from neutrino induced
e− recoils and β− decays. A slight difference in the time distribution of the scintillation
signal arises from the finite lifetime of ortho-positronium as well as from the presence of
annihilation γ-rays. [19]. A pulse shape parameter was constructed using a boosted-decision-tree
algorithm [2, 9].

The analysis is based on a binned likelihood multivariate fit performed on the energy,
pulse shape, and spatial distributions of selected scintillation events. The non-uniform radial
distribution of the external γ-ray background was included in the multivariate fit and strongly
constrained its contribution [2, 9].

The best estimate for the interaction rate of pep solar neutrinos in Borexino is
(3.1± 0.6 (stat)± 0.3 (syst)) counts/(day·100ton). If this reduction in the apparent flux is due
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Isotope Specs for LS BX Phase-I BX Phase-II
238U ≤ 10−16 g/g (5.3 ± 0.5)×10−18 g/g ≤ 8 ×10−20 g/g
232Th ≤ 10−16 g/g (3.8 ± 0.8)×10−18 g/g ≤ 9 ×10−19 g/g

14C/12C ≤ 10−18 (2.69 ± 0.06)×10−18 unchanged
40K ≤ 10−18 g/g ≤ 0.4 ×10−18 g/g unchanged
85Kr ≤ 1 cpd/100t (30 ± 5) cpd/100t ≤ 7 cpd/100t
39Ar ≤ 1 cpd/100t � 85Kr � 85Kr
210Po not specified ∼ 700 cpd/100t (decaying) ∼ 80 cpd/100t (decaying)
210Bi not specified ∼ 20 – 70 cpd/100 t (25 ± 2) cpd/100t

Table 1. Residual radioactive contamination of the Borexino liquid scintillator before and after
the purification performed in 2010-2011. 210Po rate is a factor 100 less than at the begin of data
taking. 210Bi is a factor 2 less than in Phase-I.

to νe oscillation to νµ or ντ , we find Pee = 0.62 ± 0.17 at 1.44 MeV. Assuming MSW-LMA
solar neutrino oscillations, the Borexino results can be used to measure the pep solar neutrino
flux, corresponding to Φpep = (1.6± 0.3)× 108 cm−2 s−1, in agreement with the Solar Standard
Model [2, 9].

Due to the similarity between the electron-recoil spectrum from CNO neutrinos and the
spectral shape of 210Bi decay, whose rate is ∼ 10 times greater, Borexino Phase-I only provided
an upper limit on the CNO neutrino interaction rate. Assuming MSW-LMA solar neutrino
oscillations, the 95% C.L. limit on the solar CNO neutrino flux is 7.7 ×108 cm−2 s−1. The limit
on CNO solar neutrino flux is 1.5 times higher than the flux predicted by the High Metallicity
Solar Standard Model [2, 9].

4. Prospects in Borexino Phase-II
A new measurement of pep and CNO solar neutrinos is foreseen in Borexino Phase-II. The
radioactive background levels in Borexino Phase-II are lower, thanks to a set of scintillator
purifications performed after Phase-I. The residual background contaminations are summarised
in table 1. The contamination of 210Bi, which was the dominant radioactive background, is
reduced of a factor ∼3. New methods for pulse shape discrimination between e− and e+, and
for constraining the residual rate of 210Bi, are also under study.

5. Conclusions and outlook
Borexino has achieved the necessary sensitivity to provide, for the first time, evidence of the
rare signal from pep solar neutrinos and to place the strongest constraint on the CNO solar
neutrino flux to date. This result raises the prospect for higher precision measurements by
Borexino Phase II, since the next dominant background, 210Bi, has been reduced by scintillator
purification.
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