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Abstract. The first-principles calculations of positron lifetimes of mono-vacancies in crystals 

were investigated. We use the two-component density functional theory to respectively 

compute positron lifetimes of neutral charge state of VAl defect in aluminium, VSi defect in 

silicon, VC, VSi and VC+CSi defects in 3C silicon carbide, VGa and VAs defects in gallium 

arsenide, taking into account atomic relaxation due to vacancy and electronic structural 

relaxation due to the presence of the positron. Three different calculation schemes are used. 

We find that the electron density inside the vacancy more or less increases due to the presence 

of the positron if the ionic positions are kept fixed, and the positron becomes more localized 

after the electronic structural relaxation for the case of VAl defect in aluminium and VSi defect 

in 3C silicon carbide, but it is opposite for the case of VGa defect in gallium arsenide and VC 

defect in 3C silicon carbide. The results with no consideration of the relaxation are even much 

closer to the experimental ones, therefore the atomic relaxation due to the position play an 

important role in calculating the positron lifetime of mono-vacancies in crystals. 

1. Introduction 

As is well known, positron annihilation spectroscopy (PAS) has been a powerful nondestructive 

technique to probe open volume defect in materials. As a positron gets trapped in a vacancy-type 

defect, the positron lifetime increases and this can be measured by the positron lifetime spectroscopy. 

Moreover the vacancy-type defect often has a very close relationship to materials’ property, so it is 

required to identify the type of defects corresponding to a specific lifetime comparison with other 

characterization methods or calculated lifetimes. The interpretation of the positron lifetime 

spectroscopy experimental results is usually based on theoretical lifetime calculations, especially the 

bulk lifetime calculations.  

Positron lifetime in perfect crystals has been demonstrated successfully by first principles 

calculation in past decades. They all almost obtain the similar results in the conventional way and the 

self-consistent way. While for the situation of positron in mono-vacancies of materials, there still exit 

some disputes. It has been reached that positron can be easily trapped and entirely located by negative 

or neutral vacancies, but different calculating results of positron lifetimes of vacancies are obtained by 

different authors. The discrepancies among those controversial results are mainly caused by neglecting 

the change of electron density and potential, which is usually related to atomic relaxation induced by 

vacancies and the trapped positron. Moreover, different methods applied in the calculation process are 
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also lead to such discrepancies for positron lifetimes, such as superposed neutral atom model, pseudo-

potential model, full-potential model, the local density approximation (LDA), the generalized gradient 

approximation (GGA), etc. Generally, in the conventional calculation scheme, the influence of the 

change of electron density and potential due to the presence of vacancies and positron was not taken 

into account, while these results agree with experimental ones much better than those results that all 

are considered in some situations, and this is the biggest dispute. 

For the theoretical model, the electron pileup in the vacancy region due to the atomic relaxation 

induced by vacancies. Meanwhile, the presence of positron further attracts the electron around the 

vacancy region and repel atomic nucleus away from their balance position in the perfect crystal lattice, 

moreover, in the vacancy the positron density is not zero in fact and this diminishes contact rate, thus 

cancellation exists. Therefore further calculations and analysis need to be done carefully. Only a few 

of articles concerned about the fully-self-consistent scheme [1-4, 6]. Nieminen and Boronski etal [1,2] 

first proposed the two-component functional theory and applied it to calculate the positron lifetime of 

VAl defect in aluminum, they found that the positron potential inside the vacancy became lower in self-

consistent way than that in conventional way, and the positron distribution became more spread out. 

Puska etal [3] presented a self-consistent way to calculate the case of the ideal triply negative Ga 

vacancy in GaAs, the electron density inside the vacancy increased, and the positron became more 

localized as the trapped potential became lower. Julia Wiktor etal [4] used the pseudo-potential 

method to deal with the valence electrons, while the result they got was a little big different from the 

others, especially for the positron lifetime of VC defect in SiC. 

We present first-principle calculations of positron lifetimes in the vacancies in two schemes, one is 

the conventional way based on the one component density functional theory, and another is the self-

consistent way based on the two component density functional theory. In the self-consistent way, we 

consider the influence induced by atomic relaxation due to the vacancy and the electronic structural 

relaxation due to the presence of the positron. In this paper, we choose Al, Si, GaAs and 3C-SiC as 

examples to calculate their corresponding mono-vacancy positron lifetimes, compare our results with 

the experiment lifetimes from the literatures. 

2. Method 

Theoretically, the positron annihilation rate  takes the form related to the positron density (r)n , the 

electron density (r)n and the enhancement factor 12g (0; (r); (r))n n  , and the positron lifetime   is 

just the inverse of the positron annihilation rate: 
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where c is the speed of the light and 0r is the classical radius of an electron. 

The electron and positron density can be calculated using various approximations, which leads to 

several schemes. In this study, we considered two schemes. One is the self-consistent way (SC) based 

on the two-component density-functional theory: 
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Where (r)i and 
i , (r) 

and  are respectively the electron wave function and its energy 

eigenvalue, the positron wave function and its energy eigenvalue, 
[n]

(r)

xcE

n




is the electron or positron 

exchange-correlation potential, 
[n ,n ]

(r)

corrE

n




  is the electron or positron correlation potential, and 

0 (r)n denotes the density of positive charge providing the external potential. In this scheme, the 

presence of the positron influence the distribution of the electrons and ions, conversely the change of 

the electronic structure influence the distribution of the positron, the ground electron density and the 

positron density are determined through the self-consistent solution of equations (2) and (3). In our 

situation, there is only one positron in the solid at a time, if we assume that the electron density isn’t 

affected by the presence of the positron at all, we can obtain the density from the one-component 

density-functional functions: 
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The electron density first, then the positron density, this is the so-called conventional way (CONV). 

And for the enhancement factor which taking into account an increase in the electron density at the 

positron site caused by the screening of the positron by electrons, it is a crucial ingredient in the 

context of calculating the positron lifetimes in solids, there are many different parameterized forms so 

far. In this study, we chose three forms, one is proposed by Boronski and Nieminen (BNLDA) [2], the 

second one is proposed by Barbiellini and others (APGGA) [5], and the last one is parameterized by 

Puska, Seitsonen and Nieminen ( PSN) based on the result of Boronski and Nieminen [6]. 

3. Computational details and testing 

 
Figure 1. The schematic diagram of computational details. 

 

We present a scheme as shown in figure 1 to calculate the positron lifetime for perfect crystals and 

crystals with vacancy-type defect. In the first step, we take a relaxation of ionic positions only due to 

the vacancy, then get the electron density as its initial values, then achieve the positron density by 
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solving the positron part of one-component density-functional equations as its initial values. In the 

second step, we keep the ionic positions fixed and relax the electronic structure due to the presence of 

the positron, then solve the two-component density-functional equation to get the new positron 

distribution. At last, repeat the second step until convergence is reached. In the CONV scheme, only 

the first step is needed. 

 Positron lifetime calculation is performed using the Vienna Ab-initio Simulation Package (VASP) 

[7, 8]. For the relaxation in the first step, we use a conjugate-gradient algorithm. The force acting on 

each ion is less than 0.001eV/Angst. For the electronic structure, we adopt the PAW-PBE pseudo-

potential [9] and plane wave basis set, and only take into account the valence electrons. The electron-

electron exchange-correlation potential is performed using PBE-GGA method. And for the positron 

density, we use a real space grid method, the energy convergence is
71.0 . .e a u

. 

For testing our program, we take the perfect crystals of Al, 3C-SiC, GaAs and Si as examples to 

calculate their bulk positron lifetimes. We use the experimental lattice parameters of 4.05 Å for Al, 

4.33 Å for 3C-SiC and 5.43 Å for Si and theoretical lattice parameter of 5.57 Å for GaAs [3]. We take 
2 22 2s p , 

2 13 3s p , 
2 23 3s p , 

2 14 4s p  and 
2 34 4s p  as valence electrons for C, Al, Si, Ga and As 

respectively. The results are presented in Table 1. 

Table 1. Comparison of the bulk positron lifetime (in ps) calculated in CONV and SC 

way. Different forms of the enhancement factor (BNLDA, APGGA and PSN) were 

used. The corresponding experimental values are obtained from the literatures. 

Crystal 
BNLDA 

 
APGGA  PSN 

 Exp. 
CONV SC CONV SC CONV SC 

Al 

3C-SiC 

GaAs 

Si 

186 

147 

242 

230 

184 

145 

230 

227 

 

164 

146 

246 

229 

162 

141 

234 

217 

197 

146 

253 

239 

194 

144 

249 

234 

 

161a 

140b 

231c 

219a 

a Corresponding experimental results within reference 10. 
b Corresponding experimental results within reference 11. 
c Corresponding experimental results within reference 6. 

It can be noticed in Table 1 that the bulk positron lifetimes calculated in CONV way are similar to 

that calculated in SC way for these four perfect crystals, which is consistent with the previous studies. 

Of course, as we only take into account of the valence electrons, neglect the annihilation rate of the 

core electrons, the bulk lifetimes are almost larger than the experimental ones especially for the case 

of aluminium which is metal. The results especially in APGGA/SC scheme are close to the 

experimental values. This means that our program is reliable. In PSN scheme, since the enhancement 

factor is parameterized based on another different positron-electron correlation potential [6], in this 

work we just deal with the positron-electron correlation potential in APGGA scheme, the results are a 

little different from the experimental ones, and this shows that the positron-electron correlation 

potential plays an important role in calculating the positron lifetimes. 

4. Results and discussion 

For mono-vacancies in crystals, we select three schemes, NYH stands for no relaxation due to the 

vacancy and the presence of the positron, YH stands for only relaxation of the ionic positions due to 

the vacancy and YH+P stands for the relaxation of the ionic positions firstly, then the relaxation of the 

electronic structure due to the presence of the positron. Otherwise, all the mono-vacancies are handled 

as neutral ones. 

Firstly, we study the relaxation of the ionic positions due to the vacancy. For all these crystals with 

vacancy-type defect, we use a cubic supercell with 2 2 2  unit cells. In theoretically, the inward 

relaxation due to the vacancy should be obtained. However, after a careful test of convergence, there 
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exits a very little outward expansion for the size of the supercell except in the case of the mono-

vacancy in Al (see the Table 2). One reason may be that we use the experimental lattice parameters as 

initial values and they are always a little smaller than the theoretical ones. Another reason may be that 

the supercell size is not large enough. While the nearest neighbour distance becomes short after 

relaxation in YH scheme and this is reasonable. At the same time, we calculate the positron lifetimes 

of vacancy-type defect in Al, 3C-SiC, GaAs and Si in NYH and YH scheme. Next, we study the effect 

of the localized positron on the relaxation of the electronic structure surrounding a vacancy by 

calculating the electronic structure of monovacancies in bulk Al, 3C-SiC, GaAs and Si with and 

without the localized positron, meanwhile, the ionic positions are kept fixed. 

Table 2. The calculated lattice constants (in Å) and relaxations for the crystals with 

vacancy-type defect in NYH and YH scheme. A positive (negative) number denotes 

the outward (inward) relaxation in percentage of the nearest neighbour distance with 

respect to the ideal vacancy. 

 
     Al         3 _C SiC      GaAs         Si  

AlV  SiV  CV  C SiV C  GaV  AsV  SiV  

NYH 8.10 8.66 8.66 8.66 11.14 11.14 10.86 

YH 8.06 8.75 8.74 8.81 11.46 11.48 10.90 

Rel. (%) -1.43 11.24 2.87 15.29 -8.85 -7.07 -6.97 

 

      

       (a)                                                (b) 

 
        (c) 

Figure 2. (color online) physical 

distribution of Al with monovacancy in 

[110] direction through the vacancy, 

the blue line denotes the distribution 

calculated in YH scheme and the red 

line denotes that calculated in YH+P 

scheme. (a) The electron density, (b) 

the trapping potential, (c) the positron 

density. 
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For mono-vacancy in aluminum, shown in Figure 2, the electron density inside the vacancy slightly 

increases, the positron potential becomes deeper, and the positron is more localized in YH+P scheme 

than that in YH scheme, so the positron lifetime becomes shorter further. 

 

                                                                     

(a) 
 

                                 (b) 

Figure 3. (color online) physical distribution of 3C-SiC with monovacancy of carbon 

in [110] direction through the vacancy, the blue line denotes the distribution 

calculated in YH scheme and the red line denotes that calculated in YH+P scheme. (a) 

The electron density, (b) The positron density. 

And for carbon mono-vacancy in SiC, its positron lifetime is controversial. In some previous 

theoretical studies, it was found that the carbon defect is not a positron trapping state. In our study, the 

electron density inside the vacancy almost remains unchanged and the positron becomes less localized, 

as shown in Figure 3 (a) and (b) respectively. The calculated positron lifetime is very close to its bulk 

lifetime, so we think the carbon vacancy can not be detected by the positron lifetime spectroscopy. 

 

      

                                 (a)                                             (b) 

Figure 4. (color online) physical distribution of GaAs with monovacancy of 

gallium in [110] direction through the vacancy, the blue line denotes the 

distribution calculated in YH scheme and the red line denotes that calculated in 

YH+P scheme. (a) The electron density, (b) the positron density. 

  We also show the change of the electron and positron density inside the vacancy for the gallium 

vacancy in GaAs. As shown in Figure 4 (a) and (b), the electron density is just a little larger in YH+P 
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scheme than that in YH scheme, and the positron is a little less localized. But in NYH scheme, the 

positron is well localized, as shown in Figure 5. 

 

 

Figure 5. (color online) the distribution of the positron density of GaAs with 

monovacancy of gallium in NYH scheme in [110] direction. 
 

Table 3. Comparison of the monovacancy positron lifetime (in ps) calculated in NYH, YH and 

YH+P way. Different forms of the enhancement factor (BNLDA, APGGA and PSN) were used. 

The corresponding experimental values are obtained from the literatures. 

Crystal 
NYH 

 
YH  YH+P  

Exp. 
BNLDA/APGGA/PSN BNLDA/APGGA/PSN  BNLDA/APGGA/PSN  

_ AlAl V  242/219/276     235/212/265     221/194/243  244a 

3 _ SiCSiC V  187/191/192 

 

214/219/225     198/188/203  188b 

3 _ CCSiC V  147/146/142 152/152/146  150/149/145  Noc 

C SiV C  144/143/138 150/150/145  150/149/144  --- 

_ GaGaAs V  263/274/276 253/259/246  252/257/245  260d 

_ AsGaAs V  257/268/268 254/261/248  254/259/247  257e 

_ SiSi V  254/252/259 235/233/230  233/230/227  282f 

a Corresponding experimental results within reference 12. 
b Corresponding experimental results within reference 11. 
c Corresponding experimental results within reference 13. 
d Corresponding experimental results within reference 14. 
e Corresponding experimental results within reference 15. 
f Corresponding experimental results within reference 16. 

We give the calculated positron lifetimes in different schemes and their corresponding experimental 

values in Table 3. The positron lifetimes do not change very much after we take the relaxation of the 
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ionic positions due to the vacancy and the electronic structure due to the presence of the positron. The 

positron lifetimes in NYH scheme are even much closer to the experimental ones, especially for the 

vacancy in silicon, we conclude that the effect of the relaxation of the electronic structure due to the 

positron may be less important than that of the relaxation of the ionic positions due to the positron in 

some cases. The studies on silicon with monovacancy [17-19] in fully self-consistent way give 

lifetimes around 270ps, this is very close to the experimental one, and clearly prove that the effect of 

the relaxation due to the vacancy can not be compensated by that of the relaxation due to the presence 

of the positron. 

5. Conclusions 
The positron lifetimes of monovacancies in crystals are studied in the conventional way and self-

consistent way. For perfect crystals, the similar results are obtained in these two ways, and the results 

in the GGA form are much closer to the experimental ones. For monovacancies in crystals, we select 

three schemes to calculate the positron lifetimes. In YH+P scheme, the electron density inside the 

vacancy more or less increases due to the presence of the positron if the ionic positions are kept fixed, 

and after the relaxation of the electronic structure, the positron is more localized for the mono-vacancy 

in aluminum, while less localized for the Gallium mono-vacancy in GaAs and Carbon mono-vacancy 

in SiC. The results with no consideration of the relaxation are even more similar with the experimental 

ones, especially for silicon monovacancy in silicon, so we conclude that maybe the effect of the 

relaxation of the electronic structure due to the positron is less important than that of the relaxation of 

the ionic positions due to the presence of the positron in some cases, in other words, the effect of the 

relaxation due to the vacancy can not be compensated by that of the relaxation due to the presence of 

the positron in some cases. 

Acknowledgement 
This study was partially financially supported by National Natural Science Foundation of China (No. 

11175171, 11105139). The authors are grateful to Wenshuai Zhang for insightful discussion. 

References 
[1] Nieminen R M , Boronski E and Lantto L J 1985 Phys. Rev. B 32 1377  

[2] Boronski E and Nieminen R M 1986 Phys. Rev. B 34 3820  

[3] Gilgien L, Galli G, Gygi F and Car R 1994 Phys. Rev. L 72 3214  

[4] Wiktor J, Jomard G, Torrent M and Bertolus M 2013 Phys. Rev. B 87 235207  

[5] Barbiellini B, Puska M J, Torsti T and Nieminen R M 1995 Phys. Rev. B 51 7341  

[6] Puska M J, Seitsonen A P and Nieminen R M 1995 Phys. Rev. B 52 10947  

[7] Kresse G and Hafner J 1993 Phys. Rev. B 47 R558  

[8] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 169  

[9] Blochl P E 1994 Phys. Rev. B 50 17953  

[10] Campillo-Robles J M, Ogando E and Plazaola F 2012 Solid State Science 14 982  

[11] Kawasuso A, Itoh H, Morishita N, Yoshikawa M, Ohshima T, Nashiyama I, Okada S, Okumura 

H and S. Yoshida 1998 Appl. Phys.A 67 209  

[12] Robles J M C and Plazaola F 2003 Defects and Diffusion in Metals  213-2 141  

[13] Kawasuso A, Yoshikawa M, Itoh H, Krause-Rehberg R, Redmann F, Higuchi T and Betsuyaku 

K 2006 Physica. B 376-377 350  

[14] Corbel C, Pierre F, Saarinen K, Hautojarvi P and Moser P 1992 Phys. Rev. B 45 3386  

[15] Saarinen K, Hautojarvi P, Lanki P and Corbel C 1991 Phys. Rev. B 44 10585  

[16] Polity A, Borner F, Huth S, Eichler S and Krause-Rehberg R 1998 Phys. Rev. B 58 10363  

[17] Saito M and Oshiyama A 1996 Phys. Rev. B 53 7810  

[18] Makhov D V and Lewis L J 2005 Phys. Rev. B 71 205215  

[19] Makkonen I, Hakala M and Puska M J 2006 Phys. Rev. B 73 035103  

The International Workshop on Positron Studies of Defects 2014 IOP Publishing
Journal of Physics: Conference Series 674 (2016) 012022 doi:10.1088/1742-6596/674/1/012022

8


