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Abstract. To clarify the free volume size distributions of the cardo-based polymer membranes, 

where ortho-positronium (o-Ps) undergoes pick-off annihilation, the o-Ps lifetime distributions 

were analyzed by the LT9 programme. It was found that the cardo-based polysulfone 

membrane has much narrower o-Ps lifetime/hole size distributions than the cardo-based 

polyimide membranes with the 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride 

(6FDA) moiety. Further, the lifetime/hole size distributions of the cardo-based polymer 

membranes are appreciably broadened with increasing temperature. This suggests that in these 

membranes there are holes not only of different sizes but also of different thermal expansion 

coefficients. It is also shown that in a membrane with a wider hole size distribution the average 

o-Ps lifetime tends to be longer than would be expected from the correlation between the o-Ps 

lifetime and the total free volume for common polymers.  

1. Introduction 

Introduction of a bulky cardo moiety into a polymer main chain is expected to hinder the molecular 

packing. The free volume model of gas diffusion states that the diffusivity of gas molecules in 

polymers depends on intermolecular open space often called free volume [1,2]. According to this 

model, sparse molecular packing with large free volume is advantageous to higher gas diffusivity. 

Therefore cardo-based polymers arouse interest for their application in gas separation membranes [3].  

Positron annihilation lifetime spectroscopy (PALS) has been extensively used to study the 

nanostructure of amorphous polymers [4,5]. Some of the positrons injected into a polymer in many 

cases form the bound state with an electron, positronium (Ps). The experimental positron lifetime 
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spectrum is usually resolved into three exponentially decaying components with lifetimes 1, 2, 3 (1 

< 2 < 3) and the corresponding relative intensities I1, I2, I3. The three lifetimes are attributed to the 

self-annihilation of spin parallel para-positronium (p-Ps), annihilation of non-Ps positrons with 

surrounding electrons, and pick-off annihilation of o-Ps, in which the positron in o-Ps undergoes 

annihilation with one of the surrounding spin antiparallel electrons. According to Tao [6], Eldrup and 

others [7], the pick-off annihilation lifetime of o-Ps can be related to the size of a hole for o-Ps 

localization. Under a simplified assumption that the holes in a polymer are of spherical shape, the 

relationship between the pick-off annihilation lifetime (3) of o-Ps and the average radius (R) of the 

holes is given by  
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where R0 (= R + R ) is the radius of an infinitely deep square well potential and R (= 0.166 nm) is 

the measure of the overlap of the Ps wave function with electrons on the walls of the open spaces. The 

hole volume Vh in nm3 is obtained as 
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This model, in spite of its simplicity, has been successfully applied to the study of a variety of 

functional polymers [8].  

Recently we applied PALS to a series of cardo-based polyimide and polysulfone membranes [9]. It 

was found that acid anhydride moiety of polyimide membranes has a strong impact on Ps formation in 

the sense that no Ps forms in most of the polyimides with pyromellitic dianhydride and 3,3’,4,4’-

biphenyltetracarboxylic dianhydride moieties with high electron affinity, whereas favourable amounts 

of Ps are formed in those with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) 

moiety with lower electron affinity. Favourable Ps formation was also observed for the cardo-based 

polysulfone membrane. It has been reported that Ps formation in polysulfones is little influenced by 

the presence of chemical groups or additives with high electron affinity due to the so-called anti-

inhibition effect of –SO2– groups on Ps formation [10,11]. Furthermore we studied the connectivity 

between the average hole size of cardo-based polymer membranes deduced by the Tao-Eldrup model 

and the gas diffusion coefficients. Logarithmic plots of the diffusion coefficients of O2 and N2 versus 

reciprocal average hole size for cardo-based polymers, based on the free volume theory of diffusion, 

are appreciably shifted from the previously reported correlations for common polymers. The shifts 

likely originate from the strong tendency of o-Ps staying in larger holes, which is possibly associated 

with wide hole size distributions of the cardo-based polymer membranes. This paper focuses on the o-

Ps lifetime/hole size distributions of the three cardo-based polymer membranes with favourable Ps 

formation. 

 

2. Experimental 

Figure 1 shows the chemical structures of cardo-based polymers studied [9]. The polymers have bis 

(phenol)fluorene, bis(aniline)fluorene or bis(xylidine)fluorene as the cardo moiety. Cardo polysulfone 

was supplied by Nippon Steel Corporation. Cardo-polyimides were synthesized by solution 

polycondensation reactions [3]. The abbreviations of the polymers follow the notation of X-Y-Z, 

where X means the type of the polymer; X = PI for polyimide and X = PSF for polysulfone. Y and Z 

are the abbreviations of bifunctional monomers: Y = BXFL for bis(xylidine)fluorene, Y = BAFL for 

bis(aniline)fluorene, Y = BPFL for bis (phenol)fluorene, Z= 6FDA for 2,2-bis(3,4-dicarboxyphenyl) 

The International Workshop on Positron Studies of Defects 2014 IOP Publishing
Journal of Physics: Conference Series 674 (2016) 012017 doi:10.1088/1742-6596/674/1/012017

2



 

 

 

 

 

 

hexafluoropropane dianhydride, Z = DCPS for 4,4’-dichlorodiphenyl sulfone. The total free volume Vf 

of polymer was calculated from the following 

 

0VVV f   

 

where V is the specific volume and V0 the occupied volume. The occupied volume was estimated from 

the van der Waals volume (Vw) according to the relationship V0 = 1.3VW [12].  

Positron lifetime measurements were performed in a temperature range from 323 K down to 10 K 

with a fast-fast analogue spectrometer as previously described [9]. The lifetime spectra were analyzed 

into three components with the LT9 programme [13], assuming log normal distribution of the o-Ps 

annihilation rates (reciprocal lifetimes). The analysis provided the average o-Ps lifetime (av), 

dispersion of o-Ps lifetime distributions and the relative intensity as well as two shorter discrete 

lifetimes and their relative intensities. From the obtained dispersions, o-Ps lifetime distributions at 

different temperatures were computed. At least 3 million counts were collected for each lifetime 

spectrum, which enabled the reliable analysis of the o-Ps lifetime distribution. Further, by applying the 

Tao-Eldrup model, hole volume distributions were obtained.   

 

 

 

 

Figure 1. Chemical structures of PSF-BPFL-DCPS, PI-BAFL-

6FDA and PI-BXFL-6FDA [9]. 

 

3. Results and discussion 

In LT9 log normal distribution is assumed for o-Ps annihilation rates  (=1/3).  
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where 3 is the dispersion of the distribution and 30 is the peak annihilation rate of o-Ps. From this, 

the o-Ps lifetime distribution is given by 
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Further the hole volume distribution is expressed as  
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where from equation (1),  
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Figure 2. Hole volume distributions of the three cardo 

membranes at 298K deduced from o-Ps lifetime distributions.  

 

 

Figure 2 shows the distributions of hole volumes for PI-BXFL-6FDA, PI-BAFL-6FDA and PSF-

BPFL-DCPS at 298 K obtained by the above equations. One can see that the distribution is broader in 

the order of PI-BXFL-6FDA > PI-BAFL-6FDA >> PSF-BPFL-DCPS. In figure 3 is shown the 

temperature dependence of the peak positions and full widths at half maximum (FWHM’s) of the hole 

volume distributions deduced from the o-Ps lifetimes for the three membranes. For all the membranes 

peak positions gradually shift to higher values with increasing temperature, which is reasonably 

attributed to the thermal expansion of the open spaces for Ps localization. Larger hole volumes in PI-

BXFL-6FDA than PI-BAFL-6FDA at all the temperatures studied may be attributed to the presence of 

the more bulky methyl substituted BXFL moiety in the former membrane [9]. In figure 3 we also note 
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that at every temperature the distribution is broader (FWHM is larger) in the order of PI-BXFL-6FDA 

> PI-BAFL-6FDA >> PSF-BPFL-DCPS. It is conjectured that in the former two membranes because 

of the stiff chains of polyimide the structures around large intermolecular spaces are not able to relax 

sufficiently and molecular packing is hindered, resulting in the wide hole size distributions peaked at 

larger hole sizes. This is not surprising because Shimazu et al [14] reported that o-Ps lifetimes in other 

polyimides with 6FDA moieties are also widely distributed at room temperature. The lifetime/hole 

size distributions of the membranes, in particular, PI-BXFL-6FDA and PI-BAFL-6FDA are 

considerably broadened with increasing temperature, which suggests that in these cardo-based 

membranes there are holes of not only different sizes but also of different thermal expansion 

coefficients. In PSF-BPFL-DCPS, molecular chains are more flexible than polyimides [3, 9] and hence 

the distributions are much narrower and the holes are smaller. 
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Figure 3. Peak positions (left) and FWHM’s (right) of the hole volume distributions of the three 

cardo-based membranes as a function of temperature. 

 

Figure 4 shows the plot of the average o-Ps lifetime versus total free volume for common polymers 

such as polystyrene, polycarbonate and so forth [15] as well as the three cardo-based polymer 

membranes at 298 K. For common polymers, where the hole size distributions are not significantly 

broadened, there is a good correlation between the two quantities; the o-Ps lifetime systematically 

increases from 0.5 ns to higher values with increasing total free volume. However, the data points for 

PI-BXFL-6FDA, PI-BAFL-6FDA and PSF-BPFL-DCPS are all deviated upward from the correlation, 

indicating that the average o-Ps lifetimes in these polymers are appreciably longer than expected from 

the correlation for the common polymers. The deviation is the largest for PI-BXFL-6FDA and the 

smallest for PSF-BPFL-DCPS. Therefore, the broader the lifetime/hole size distribution in figure 2, 

the larger the deviation from the correlation for the common polymers in figure 4.  

According to molecular dynamics simulation of polymers [14, 16], the holes in the amorphous 

region of polymers are not closed, with opening and well connected to each other. Therefore, in a 

polymer with a wide hole size distribution, Ps formed in a smaller hole may migrate quantum 

mechanically to a neighbouring larger hole through connecting channels. In a polymer with a 

particularly wide hole size distribution such as PI-BXFL-6FDA, such a process is repeated a number 

of times until o-Ps gets trapped in the largest available hole. Once trapped in the largest available hole, 

o-Ps cannot go back to the smaller hole because of reduced zero-point energy in it, which results in the 

average o-Ps lifetime considerably longer than that expected from the average size of the actual hole 

size distribution. This is likely the reason why the data points for PI-BXFL-6FDA, PI-BAFL-6FDA 

and PSF-BPFL-DCPS are deviated from the correlation for common polymers in figure 4.  
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Figure 4. Correlation between the average o-Ps lifetimes and the total 

free volume for common polymers such as polycarbonate, polystyrene, 

polysulfone, polyethersulfone etc at 298 K. The line shows the guide for 

the eyes under the assumption that the o-Ps lifetime in a polymer with no 

free volume is 0.5 ns. Included in the figure are the data for PI-BXFL-

6FDA, PI-BAFL-6FDA and PSF-BPFL-DCPS at 298 K.  

 

4. Conclusion 

Positron lifetime spectra for three cardo-based polymer membranes, PI-BXFL-6FDA, PI-BAFL-6FDA 

and PSF-BPFL-DCPS with favourable Ps formation, recorded at different temperatures, were analyzed 

by the LT9 programme and the o-Ps lifetime/hole size distributions were obtained. At each 

temperature, the hole size distributions are broader in the order of PI-BXFL-6FDA > PI-BAFL-6FDA 

>> PSF-BPFL-DCPS. The hole volume distributions of the membranes, in particular, PI-BXFL-6FDA 

and PI-BAFL-6FDA are considerably broadened with increasing temperature, which suggests that in 

these cardo-based membranes there are holes not only of different sizes but also of different thermal 

expansion coefficients. The average o-Ps lifetimes of the three cardo-based membranes at 298 K are 

considerably longer than expected from the correlation between the o-Ps lifetime and total free volume 

for common polymers. Quantum mechanical migration of o-Ps from smaller holes to larger holes in a 

polymer with a wide hole size distribution may be responsible for the appreciable upward deviations 

of the o-Ps lifetimes from the correlation for common polymers.  
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