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Abstract. Intersubband absorption linewidth in GaAs quantum well due to scattering by LA 

phonons and ionized impurities is calculated. The method which used for calculations is 

similar to a well-known method for calculating transport mobility. The linewidth dependence 

on temperature, as well as on well width is presented. The estimation for absorption coefficient 

is proposed, based on two-dimensional dynamical conductivity expression. The coefficient is 

calculated for different well widths, as well as for different temperatures. 

1.  Introduction 

Intersubband transitions (ISBT) in quantum wells (QW) are of great interest due to its unique 

characteristics: ultrafast relaxation, great ability to customize the wavelength of transitions, many-

body effects, etc. [1-5]. This is important not only in terms of fundamental physics, but also the 

development of new technological applications. Many devices are developed based on ISBT in 

semiconductor quantum wells, such as intersubband laser [6], infrared photodetectors [7-9], ultrafast 

optical modulators [10], optical switches [11]. Moreover, these transitions play key role for improving 

the performance of quantum cascade lasers [12]. 

In this connection, it is important to have detailed understanding of processes behind ISBT. The 

performance of devices based on IBST depends on its properties, such as the transition line shape 

broadening. The mechanisms of the broadening depend on various scattering processes. Previously 

reported lack of correlation between transport broadening and intersubband linewidth brings to the 

necessity of detailed consideration of different scattering mechanisms input into intersubband 

absorption linewidth.  

The linewidths have been measured for various temperatures [13], well widths [14], alloy 

compositions [14], and doping positions [15] in different QWs. These results show that absorption 

linewidth has a weak dependence on temperature and alloy composition and apparently has little 

correlation with mobility. However, its strong well-width dependence suggests that the main 

contribution is from interface roughness scattering. 

In a paper [16], authors discussed the effect of interface roughness scattering on linewidth by 

comparing calculations based on a theory by Ando [17] and experimental data for modulation-doped 

GaAs/AlAs QWs with a well width of 80 Å. The results show that linewidth is much more sensitive to 

interface roughness scattering than transport mobility is, because the contribution from the 

intrasubband scattering in the first excited subband is much larger than that in the ground subband 

[16]. Even in wide GaAs QWs, where interface roughness scattering should be less effective, recent 
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reports [18, 19] showed that interface roughness scattering has a larger effect on linewidth than either 

electron-electron scattering or bulk impurity scattering. 

However, owing to further development of heterostructures growing techniques it is quite natural to 

expect, that the contribution of interface roughness scattering mechanism should decrease. Hence, the 

detailed discussion of other scattering mechanisms, especially phonon scattering mechanism, are still 

actual and need more detailed investigation. Furthermore, quantitative estimation of intersubband 

absorption coefficient in QWs is still actual.  

In the presented paper, we apply the method described in [20], which, in its turn based on Ando’s 

theory [17], to calculate broadening due to scattering by LA phonons and ionized impurities (ION), in 

order to compare their respective contributions to intersubband absorption linewidth. Moreover, we 

offered a way to estimate absorption coefficient based on a formula for the two-dimensional (2D) 

dynamical conductivity. 

On the other hand, there is a need to consider a more realistic model of the confining potential, 

which takes into account both the physical and chemical properties of the structure and its geometry. 

The first form height and shape of the potential at the interface, and the geometry determines the 

symmetry of the Hamiltonian (in the absence of external fields). For these purposes, different models 

were applied for confinement potentials in low-dimensional systems [21-25]. In the first 

approximation, the confinement potential can be approximated by a parabolic one. Let us mention, 

that the ideal parabolic approximation works well for comparably low levels. Thus, we will suppose, 

that QW confinement potential looks like 

 
* 2 2

0 ,
2


conf

m z
V z                (1) 

where *m  is the effective mass of electron, 
0  

is the frequency of QW confinement potential, defined 

with the help of virial theorem according to the relation 
0 

* 2m L
. Furthermore for exact equality we 

will represent 0  
over L dependence as 
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where γ is some fitting parameter, which provides the exact equality in equation (2). 

2.  Theory 

A theory for absorption linewidth due to ISBT in 2D systems was formulated by Ando [10, 17] for 

elastic scatterers in case of single-particle excitation. Absorption lineshape for transitions between the 

lowest subbands is described as real part of 2D dynamical conductivity 
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It is suggested, that all electrons are initially in the ground subband.  

Here, 
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e is the elementary charge,  is the reduced Planck constant, *m  − the electron effective mass, 10f  

is the oscillator strength,  10 1 0 E E E  is the intersubband energy difference between lowest 
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subbands,  f E  is the Fermi distribution function at temperature T, nk  is the state vector of the 

electron with subband index n and wave vector k , and  
2 2

*2
 

k
k

m
, 

1H  is the scattering potential, 

and the ...  denotes the average over distribution of scatterers.  

Expression (5) originates from the difference in effective potentials of scatterers for the two 

subbands and vanishes if the effective potential is the same. The term (6) describes relaxation process 

connected with intersubband scatterings. A parabolic conduction band is assumed, or a constant 

effective mass for different subbands. As in [20] the full width at half maximum of the spectrum given 

by equation (4) as 
op2 . 

As noted above, in current paper considerations are performed within frame of single-particle 

model. But for full consideration of intersubband absorption problem many-body effects should be 

taken into account. There are two relevant many-body effects: static and dynamic screening. The 

former screens the potentials of elastic scatterers while the latter induces collective charge-density 

excitation because of the incident optoelectric field. The static screening effect can be included by 

replacing the scattering matrix element  1'mk H nk  with a new expression [20]. So the screening 

correction only results in dividing  10 ' 0k H k  in equation (4) by the factor 
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where  , q T  is the static dielectric function [26], [27], and     kl mn
F q  is a form factor defined      

by [17] 
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In our paper we discuss parabolic infinitely high QW, so there is no screening factor in equation 

(5).  ,S q T  hardly affects absorption linewidth because it is 1.  

A depolarization field is considered as the major contributor for dynamic screening effect. It brings 

to a new expression for absorption lineshape of collective excitation -  Re zz  . The resonance 

energy 
10E  of  Re zz   is blue-shifted from the original resonance energy 10E  of  Re zz  , and 

 
2

2

10 10 pE E   , where 
p  is the plasma frequency. The blue-shift  

2

10 10 102pE E E   is 

called the depolarization shift. The linewidth of  Re zz   is the same as  Re zz   if  
op2  is 

independent of energy [1], but they are different in general. When the depolarization shift is 

sufficiently small, or  10 10 op2 0E E   ,  Re zz   is approximately equal to  Re zz  . 

Assuming above discussion, in most cases of GaAs QWs examined later in this paper, the 

depolarization shift 
10 10E E  are small compared with  op2 0 , so the absorption linewidth is 

estimated directly from  Re zz   in equation (2). 

The total scattering rate can be obtained as the sum of rates for different scattering mechanisms, 

such as scattering by interface roughness (IFR), LO phonons, LA phonons, alloy disorder (AD), and 

ionized impurities (ION): 

             IFR (LO) (LA) ( ) (ION)

op op op op op op ...ADE E E E E E             (9) 

We perform numerical calculations for a single QW with a parabolic confinement potential. The origin 

of the z axis is set at the center of the QW. Material constants are taken for a GaAs QW. 
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2.1.  Scattering on ionized ions 

When dopant impurities are ionized (donors) electrons in QW are scattered on quasi-2D Coulomb 

potential of donors 
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The scattering matrix element due to an ionized impurity is obtained by 
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The final expression for matrix element is 

 
2 2

2

ION

2
exp

4

L L k
M Ze

S



  

 
  

 
    (13) 

As we mentioned above the broadening term connected with intrasubband relaxation (see equation 

(5)) vanishes if effective potential is the same for the two subbands [17]. So here we consider only the 

term (6). Also, we proposed the central location of impurities ( 0iz  ), so impurities distribution is 

pure 2D. Therefore, for linewidth we have 
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We consider only intersubband scattering mechanism here. 

2.2.  Scattering on LA phonon 

Acoustic phonon scattering via deformation potential coupling, or simply LA phonon scattering, is 

virtually elastic. The 3D scattering matrix element is given by [28] 
2

2

3D
2

B

l

k TD
M

c


        (16) 

for both LA phonon emission and absorption processes, where D is the deformation potential constant 

and lc  is the longitudinal elastic constant. Note that equation (16) is independent of the scattering 

vector as a result of the linear dispersion relation of LA phonons. Therefore, for intersubband 

scattering only we have 
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The final expression for LA scattering linewidth is  
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As it seen from figure1, the linewidth due to scattering on ionized impurities increases with the 

growth of temperature. The increase is greater, as the temperature decreases. 

On figure 2 the linewidth dependence on QW width is presented. As one can see the linewidth is 

also increases with the width of QW. This result is opposite to the case of scattering on interface 

roughness [20], which is the most significant scattering mechanism and makes a major contribution to 

the linewidth [20]. 

3.  Absorption coefficient 

The absorption coefficient for transitions between the two lowest subbands can be expressed as 

 
 Re zz
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   ,               (19) 

where L is the QW thickness. Taking into account the expression (3) for 2D dynamical conductivity, 

we got 
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where linewidth includes both LA and ION scattering mechanisms 
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The final integral expression for absorption coefficient is
 

 

2

2

/

0

0 02

2

0 2 /

0

0 0

1
(2 )

( )

1
1 (2 )

B

y

y

m L k T

y

A B
e I y y

C e dy

A B
x e I y y






  

 


  

 

   
    

    


   
      

    

          (22) 

where the following notations were done 
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Figure 1. The dependence of 

 2 op E  due to ionized 

impurity and acoustic 

phonon scattering on 

temperature. 

 

Figure 2. The dependence of 

 2 op E  on QW width. 

4.  Results 

We obtained absorption lineshape for different temperatures, impurity concentrations and QW width. 

The results are in good agreement with the results of previous authors as well as with experimental 

data. 

In figures 3, 4 absorption lineshape for different temperatures are presented. As it can be seen from 

Figs absorption peak is blueshifted with the decrease of QW width. Also the picture changes with the 

increase of temperature.  
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Figure 3. The dependence of absorption coefficient on QW width 

(for T=77K). 

Figure 4. The dependence of absorption coefficient QW width 

(for T=300K). 
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