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Abstract. A formalism of the Thomas-Fermi method has been applied for studying the 

screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical 

quantum wire embedded in the barrier environment. With taking into account of strongly low 

dielectric properties of the barrier material, an applicability of the quantum wire effective 

interaction potential of the confined charge carriers has been revealed. Both screened quasi-

one-dimensional interaction potential and effective screening length analytical expressions are 

derived in the first time. It is shown that in the long wavelength moderate limit dielectric 

confinement effect enhances strength of the screening potential depending on the both radius of 

the wire and effective screening length, whereas in the long wavelength strong limit the 

screening potential solely is determined by barrier environment dielectric properties. 

1.  Introduction 

Wide interest to electron gas (EG) properties in quasi-one-dimensional (Q1D) semiconductor 

structures (quantum wires (QWR), nanorods, nano-whiskers or carbon nanotubes [1-4]) is initiated by 

application potential of these structures in high-speed electronic and optical devices [5]. A Q1D EG in 

these systems can be produced by intense optical illumination of a undoped QWR’s or by modulating 

of the doping material [6]. An advanced selective doping makes it possible to spatially separate free 

carriers from the parent ionized impurities and to investigate  charged Q1D carrier system rather than 

the  neutral electron-hole plasma. As follows, a Q1D electron channel, confined in Q1D nanostructure 

(quantum confinement (QC)), can coexist with the confined coulomb centers (photo excited excitons, 

impurities) as in Q2D case [7] and screen Coulomb polarization fields between quasiparticles. In this 

sense, both the depth and wide scope of physics of the low-dimensional systems is mainly caused by 

strong quasiparticle correlations and weak screening of Coulomb interaction. Meanwhile the latter’s 

strength and further enhancement are connected in the further lowering of the dimensionality of the 

nanostructure. In the 3D system Coulomb screened potential decays exponentially in real space and 

effectively becomes a short-range potential [8]. In a pure 2D structures Coulomb statically screened 

potential at the long-wavelength limit possess the 2D Coulomb law for the  intermediate distances and 

power law spatial dependence for large distances, respectively [9, 10]. There is specific screening 

radius here and, in addition, screening parameter saturates both for the small temperature and large 

planar carrier density of the 2D EG. The Coulomb screening effect reducing takes place because free 

carriers can only screen Coulomb field between any two charges inside a low-dimensional system, 
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whereas a part of field extending outside the confinement region remains unscreened. It is assumed 

that this tendency should go on more strong by for the transition from quantum well (QW) to QWR. 

The physical concept, that dielectric screening would be insufficient to reduce Coulomb repulsion 

between 1D (Q1D) confined charge carriers originates from the Kuper’s work [11] and later this 

model reinvestigated in Ref.[12] by Davis. As a main result, the screened Coulomb potential 

expressions inside and outside the conducting 1D single-wire and coaxial cylinder are obtained in the 

Tomas-Fermi approximation (TFA). Subsequently, Lee and Spector [13] used random-phase 

approximation (RPA) to evaluate a screening potential of the charged impurity in semiconducting 

wire. Reyes et al. [14] derived both the dielectric function of 1D EG and asymptotic forms of the pure 

1D screened Coulomb potential in semiconductor QWR by using 1D generalization of the TFA. 

Recently, Wang et al. [15] derived an analytical formula for  the screened Q1D Coulomb potential in 

semiconductor Q1D nanostructures. 

A realistic semiconductor QWR either can be freestanding or surrounded with a barrier 

environment. In this sense, for the Coulomb center-based structures, use of the low dielectric constant 

barrier environment of semiconductor QWR  (lower than the semiconductor dielectric constant) is 

favorable, as it enhances the Coulomb interaction inside the QWR (dielectric confinement effect (DC)) 

[16-18]. The latter enhances both electronic and optical properties of the nanostructure and as a major 

result it becomes possible to implement “Coulomb interaction engineering” therein [16].  

This tunability of the Coulomb interaction in the QWR due to the barrier environment dielectric 

properties enhances and modifies  many body effects as well, in particular, dielectric screening effect 

of the Q1D EG. Most of the theoretical works in this area have been done by RPA framework to 

calculate the linear response of the QWR to an external charge in presence of the DC effect. Wendler 

and Grigoryan [19] by using a two-subband model an influence of the DC effect on the Q1D intra- and 

intersubband plasmon have studied. It has been shown that for a 1D long wave limit intrasubband 

plasmon possess a linear dispersion, is independent of the dielectric screening of the QWR and is 

wholly screened by surrounding barrier environment as in the Q2D intrasubband case [20]. Whereas 

by Aharonyan et al. in presence of the strong DC effect has been shown [21], that together with the 

previous result, which is consistent for the case of very small wave vectors only, there exists 1D 

moderate small wave vectors range in long wave limit as well, that collective plasmon frequencies are 

independent of the 1D wave vector and increase with decreasing of the QWR radius. Recently in 

Ref.[22] it is found that in the long-wavelength limit the dielectric screening and collective excitations 

of the Q1D EG are to be strongly influenced by barrier environment and exclusion of the DC effect in 

free-carrier screening results in an erroneous charged impurity scattering rate in QWR.   

In the present paper we explore a general problem of determining the interaction potential of point 

charges pair confined within the semiconductor QWR embedded in the dielectric barrier environment 

and screened by Q1D EG. Our treatment sharply differs from that derived in Refs.13-15, where 

assumes that Q1D EG has homogeneous background having dielectric constant same as the barrier 

media. 

2.  CQWR model and TFA 3D screening potential 

We are considering an infinitely long semiconductor cylindrical QWR (CQWR) of a radius R filled by 

the active material with the dielectric constant w  and immersed in a dielectric barrier environment 

with the dielectric constant b  . We have to argue, that the QWR infinite length concept allows us to 

discuss definite realistic semiconductor narrow samples, where one can used an adiabatic 

approximation of the Coulomb interaction. The latter replaces the three-dimensional potential of 

electrons and holes by a 1D Coulomb potential that describes their interaction along the QWR axis. In 

this sense, we are omitting a discussion in certain semiconductor quantum rod systems, where both the 

transverse and longitudinal dimensions have comparable sizes (for more details see for example [23]). 
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Figure 1. An infinitely long semiconductor 

cylindrical QWR (CQWR) of a radius   R  filled 

by the active material with the dielectric constant 

w  and immersed in a dielectric barrier 

environment with the dielectric constant b . 

 

Let us take in the cylindrical polar coordinates ),,( z , where  the z axis coincides with the 

CQWR axis. The sought interaction screened potential  ),(),( zezV SS     of charges  –e and  e  to 

be located at points (0, 0) and ),( z  respectively, is related to the induced charge density by 

generalized Poisson’s equation   
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where )()],([),( 00  ind

S

indind nzenzn   is the variation of the density of EG, 0  is the 

chemical potential in the absence of the external perturbing field. Due to the cylindrical and reflection 

symmetry of the discussed problem Eq.(1) becomes independent of the angular coordinate  . 

In the equation system (1) we impose a constraint on the free electrons: the uniform local number 

density of electrons has to be taken zero everywhere except in the interior of a CQWR. It is supposed 

as well that only a charged channel contributes to the CQWR screening in presented model. 

In the assumptions the externally applied charge –e produces a linear response in Q1D EG, for 

large enough distances when 
0Se  we may expand ),( znind  and obtain in leading order as  
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Together with the abovementioned assumptions a strong confinement condition would be assumed 

that the quantum wire radius is small compared with the Coulomb center Bohr radius  
22

0 / ema ew  for bulk samples ( Ra 0 ). As follows, the distances along the wire axis  Rz   

are essential in discussed case and therefore the long wave 1D region  1 Rq  could be appropriate 

for the interaction screened potential in accordance with the TFA. This permits us to apply a 

geometrical adiabatic method introduced for the first time in Ref.[9] when discussing the Q2D EG 

properties of the QW system. Substituting equation (2) in the first equation of system (1) and 

expressing the screening potential ),( zVS  in Fourier components as   dqeqVzV zqi
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where kkq  . The latter is the linear equation with the variable coefficient in the middle term 

depending on the plane coordinate  . A characteristic spatial change of the quantity  
0 indn  is 

significantly in the order of the CQWR radius R . As in Ref.[9] with the Q2D EG case, if replace the 

quantity  
0 indn   in equation (3) by the latter’s average value such as  

R 

z 

εw εb 

2nd International Symposium "Optics and its Applications" IOP Publishing
Journal of Physics: Conference Series 672 (2016) 012009 doi:10.1088/1742-6596/672/1/012009

3



 

 

 

 

 

 

                                              

00 00

11




 














L

R indind n

S
dd

n

S

n
,                                          (4) 

we can obtain linear equation  

                                                       )(
4~1 2

2

2

2






 w

SS

e
VqV 

















                                  (5) 

with the independent of the variable   coefficient  
222~
Sqqq  , Ln    is the mean linear charge 

density, 2RS  is the CQWR cross section area. Here in equation (5)      
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is the averaged TFA screening parameter. 

As we can see from the Eq.(5) a characteristic spatial distance along the z axis in CQWR for that a 

solution of the equation changes appreciably, is order of the 
1~q . If the condition 1~ Rq  holds 

then, the sought potential  ),( qVS   from the Eq.(3) coincides with the solution of Eq.(5) and, hence, 

we must focus on the solution of the last equation.  The most general solutions of the Eq.(5) both with 

the axial and reflection symmetry at the origin are [11, 12]    
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where I(x) and K(x) are modified Bessel functions. The coefficients A(q),  B(q), C(q)  and  D(q) have 

been determined by applying the standard Maxwell boundary conditions at the CQWR surface and 

requiring the limiting asymptotic expressions of the electrostatic potential ),( zVS   both at the origin 

and infinity. As a result, pair of the linear equations  
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is derived, where the expressions D(q)=0, B(q)= - 2e
2
 /π w are taken into account [12].  

After combining solutions of Exps. (8) with the equation (7) for the sought 3D interaction screened 

potential of the semiconductor CQWR embedded in the dielectric barrier media obtain 
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where bwr  / . As follows, the screened potential in the QWR region consists of the 

homogeneous and inhomogeneous polarization connected parts such as: 
inh

SSS VVV  hom
. In the case 

of an infinite wire the potential inside the wire takes the fully screened 3D Debye-Hückel potential 

form as R  
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For the case of infinitesimal wire or filament ( R 0) the screened potential outside the QWR 

takes the unscreened Coulomb potential form characterized by barrier dielectric constant 
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Note, that the equation (9) easily reduces to the appropriate unscreened CQWR 3D interaction 

potential forms (see Ref.[16])  if neglect the TFA screening parameter  Sq  in the effective Q1D wave 

vector expression 22~
Sqqq  . In turn, the screened potential would be reduced as well to the 

metallic CQWR case expressions (Refs.[11, 12]) by substitution 1 bw  . 

3.  Dielectric confinement affected Q1D CQWR screening potential and effective screening 

radius 

Now we will obtain CQWR Q1D interaction screened potential analytic expressions taking into 

account the DC effect. In order to get a general insight into the “Coulomb interaction engineering” 

possibilities of the DC effect a strong contrast between the dielectric constants w  and b  is accepted 

such as: bwr  / >> 1. 

In the previous section the condition 1~ Rq  has been imposed meaning that the typical spatial 

change of the screened potential energy’s Fourier-component is large enough than the CQWR radius. 

The latter will be realized when the following two conditions are simultaneously fulfilled  
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With these conditions the screened potential takes the Q1D form such as 
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If we neglect the DC effect, i.e. the condition r ~1 would be imposed in equation (13), then  1D 

screened potential long wave limit result has to be restored (Exps.4.3-4.4 in Ref. [14]) in QWR. 

As for the unscreened case in QWR [16, 18], for the asymptotic distances along the wire axis  

Rz   there exists in equation (13) two distinct  effective long wave vector ranges appropriate to the 

1D moderate small and very small wave vectors. The latters are: 1)ln()( 12 qRqRr  and 

1)ln()( 12 qRqRr , respectively, for that the Q1D screened potential takes the following 

asymptotic analytic forms. 

3.1.  A  

For the intermediate distances Rz   corresponding to the criteria    
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after identical transformations connected with the first wave vector inequality, the screened interaction 

potential takes the form 
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The latter, in turn, gives the result as   
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From the standpoint of both long wave ( 1 Rq ) and DC effect ( bwr  / >> 1) conditions, 

the main contribution in equation (16) connected with the inhomogeneous polarization related second 

term. 

Afterwards, the screened interaction potential will take the final form   
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As can be seen from equation (18) the DC affected screening potential deviates from the 3D and 

pure 1D screened potential forms. It takes the Q1D form and, as in the Q2D case [9], strongly 

enhances with the reducing of the QWR confinement length. The similar result is established in 

Ref.[14] as well, where the DC effect is out of the discussion.  

Note, that the Q1D screening effect emerges for the moderately large  Rz    intercharge 

distances only, which is appropriate to the moderately thin quantum wires. The screened potential 

)(1 zV DQ

iS
 strongly depends from the DC affected effective screening parameter Sq~  and, in turn, is 

enhanced due to the small parameter RqS
~ << 1. At the same time,  )(1 zV DQ

iS
is exponentially weak 

enough outside of the spatial region with the   linear size equal to 
1~ SS qz , which is believed to be 

the effective Q1D screening distance in CQWR. Thereby takes place a recovering of the effective 

Q1D screening length, like a DC affected QW case [9, 25]. Besides that, the Q1D screening length

 

Sz  

strongly depends on the dielectric constants ratio r . As follows, accounting of the DC effect results 

that the screening effect becomes effective in this case.       

Let now study the TFA screening averaged parameter after equation (6).   

Within the framework of the TFA method it is believed that only one size-quantized energy 

subband is filled (the size quantum limit (SQL)) and that the spatial variation of the electrostatic 

potential is small over distances comparable to the mean electron de Broglie wavelength  λdB. So in 

SQL the QWR is believed thin enough (R < λdB) that the long wave condition qR< 1 after equation 

(12) holds. In turn, the mean linear charge density Ln   after equation (6) is determined by 1D EG 

statistics at 0K as [24, 14] 
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where eFF mkE 2/22   is the Fermi energy of the 1D EG and the Fermi wave number is determined 

as 2LF nk  , em  is the electron effective mass. If combining the Exps. (6) and (19) we get 
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The second inequality in (12) in accordance with equation (20) results that 10 Lna , i.e. the 

number of 1D electrons on the Bohr radius length should be large. 
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3.2.  B  

For the very large intercharge distances Rz   corresponding to criteria 
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and with the small enough related values of Sq  such as 1)ln()( 12 qRRqSr , the screened 

potential with the second wave vector inequality goes to the form 
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Equation (23) is appropriate to the extremely thin wires and illustrates the following features.  

At first, the latter reduces to the 1D Coulomb screened potential when DC effect is absent (see 

equation (4.5) of Ref.[14]). In turn, )(1 zV DQ

iiS
 is characterized, as in the unscreened case [16], by Q1D 

Coulomb law with the surrounding barrier environment small value dielectric constant. Thus, in the 

case of thin enough quantum wires, the Q1D screening effect is wholly suppressed regardless of the 

accounting the DC effect. That is fairly natural, since in the Q1D  (1D) systems for the large enough 

intercharge distances z, the predominant part of the electric field lines extend outside the free carrier 

confinement region. As a result, the free carriers cannot effectively screen the Coulomb field between 

any two charges inside the thin enough quantum wire. 

4.  Conclusion 

In summary, the asymptotic relatively simple expressions of the screened Coulomb interaction 

potential and effective screening length of the semiconductor CQWR embedded in the   dielectric 

barrier media is derived. It is shown, that for the moderately thin DC influenced semiconductor 

CQWR the screened Q1D interaction potential to be    
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The latter becomes strongly enhanced when reducing both wire radius and the Q1D effective 

screening parameter Sq~ . Expression of the DC affected effective Q1D screening length  
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is established in the TFA approximation, which strongly depends on the dielectric constants ratio r . 

It is received, that, like a DC affected QW case, in DC influenced QWR system takes place a  

recovering of the effective Q1D screening length.  It has been revealed as well that the screening effect 

does wholly diminish in thin enough quantum wire, in accordance with Q1D Coulomb law (23). The 

latter is  characterized by barrier environment small dielectric constant as in the unscreened case. 
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