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Abstract. Radiation intensity is investigated for a charged longitudinal oscillator moving
along a helical trajectory around a dielectric cylinder immersed into a homogeneous medium.
The influence of the longitudinal oscillations one on the characteristics of the angular distribution
of the radiation intensity in the exterior medium is discussed. It is shown that the presence of
oscillations serves as a mechanism to control the location and the height of the radiation peaks.

1. Introduction
The presence of medium can essentially change the characteristics of the high-energy
electromagnetic processes. Moreover, new types of radiation phenomena can arise. Well-known
examples are Cherenkov and transition radiations. In particular, by taking into account the
wide applications of the synchrotron radiation, it is important to study the influence of medium
on the spectral and angular characteristics of the synchrotron radiation.

In references [1]-[4] we have investigated the radiation generated by a charge moving along a
helical orbit around/inside a dielectric cylinder. It has been shown that under certain conditions
on the material of the cylinder and on the particle velocity, strong narrow peaks appear in the
angular density of the radiation intensity. At these peaks the radiated energy exceeds the
corresponding quantity in the case of a homogeneous medium by several orders of magnitude.
In these investigations it was assumed that the charge moves along a circular helix coaxial with
the cylinder axis and the rotation in the plane perpendicular to this axis is uniform. In realistic
situations the trajectory of the particle may differ from the coaxial one. In Ref. [5] we have
considered the electromagnetic fields and the radiation intensity for a charge moving around a
dielectric cylinder along a helical trajectory the projection of which on the plane perpendicular
to the cylinder axis is an arbitrary closed curve. In particular, the influence of the trajectory
shift from the circular one on the characteristics of the peaks is discussed.

In the present paper, as an application of general results of [5], we consider the radiation from
a longitudinal oscillator moving along a circular helical trajectory around a dielectric cylinder. In
Section 2, the formula for the angular distribution of the radiation intensity on a given harmonic
is presented for a general case of helical motion. The special case of a longitudinal oscillator
moving along a circular helix is discussed in Section 3. The main results are summarized in
Section 4.
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2. Radiation intensity for a general motion
Consider a point charge q moving along a helical trajectory around a dielectric cylinder with
radius ρc. The dielectric permittivity of the cylinder will be denoted by ε0 and the cylinder is
immersed into a homogeneous medium with permittivity ε1. In cylindrical coordinates (ρ, φ, z),
with z-axis along the cylinder axis, the motion of the charge is described by the functions
ρ = ρe(t), φ = φe(t), z = v‖t. We will denote by T the period of the transverse motion
and ω0 = 2π/T . Introducing the angle θ between z-axis and the radiation direction, at large
distances from the cylinder, for the angular density of the radiated energy per unit time on a
given harmonic n = 1, 2, . . . , one has
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where F = J,H, and
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with l = ρ, φ, z, vz = v‖. For a given direction, the radiation frequency is given by |ωn|. For
β1‖ > 1, the radiation along the Cherenkov direction θ = θC = arccos(c/(v‖

√
ε1)) should be

considered separately. For a charge rotating near the boundary of the dielectric waveguide, for
the wavelength of the radiated quanta one gets
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If β1‖ cos θ is not too close to 1, for the waveguide radius ρc ∼ 1cm and for harmonics n ∼ 100
the frequency of the radiated wave is in the terahertz range. By decreasing the radius of the
waveguide, the radiation frequency increases. For ρ0 ∼ 0.1mm the frequency is near the optical
range. Currently dielectric waveguides are available with the radius of the order of nanometer
(see, for instance, [6, 7]).

In a special case of a circular helix with ρe(t) = ρe = const, φe(t) = ω0t, one has
Fm′,m,l (n, λ1) = vlFm′(λ1ρe)δnm and in (1) the term m = n contributes only. The radiation
intensity in this special case has been discussed in detail in [4]. In particular, the conditions were
specified under which strong narrow peaks appear in the angular distribution for the radiation
intensity at a given harmonic n.

3. Radiation intensity from a longitudinal oscillator
In this section we specify the general formula for the radiation intensity given above for a special
case of the motion along a circular helix with additional longitudinal oscillations of the charge.
In this case the components of the velocity are given by the expressions
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one has
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Hence, for the contribution of the m = 0 term, which is present only for n = n0, one gets
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In the case n 6= n0, for the angular density of the radiation intensity on a given harmonic n
we find the expression
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where m is given by (12) and the prime means that the term with s = n/n0 should be excluded
from the summation. For a � 1 the dominant contribution comes from the term with s = 0
and the contributions of the other terms are small by the factor a2s. The leading term coincides
with the corresponding quantity for a charge uniformly rotating around a dielectric cylinder.
For n = n0 the radiation intensity is the sum of the expressions given by (17) and (18):
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In figures below we have presented the angular density of the number of the radiated quanta,
per period T of the transversal motion,
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as a function of the angle θ. The graphs are plotted for the harmonic n = 10. The dashed curves
correspond to the radiation in a homogeneous medium with permittivity ε1 and the full curves
correspond to the radiation from a charge rotating around a dielectric cylinder with permittivity
ε0 = 3.75ε1 immersed into a homogeneous medium with permittivity ε1 (for a charge rotating
in the vacuum (ε1 = 1), ε0 = 3.75 corresponds to the dielectric permittivity of fuzed quartz). In
all cases we have taken ρc/ρe = 0.95. For figure 1 one has β1‖ = 0.35 and β1⊥ = 0.9. The left
panel corresponds to the radiation in the absence of the longitudinal oscillations (a = 0) and
for the right panel a = 0.1. Figure 2 presents the same graphs for a purely transverse motion
with the same energy, β1‖ = 0, β1⊥ =

√
0.352 + 0.92 ≈ 0.966. In this case the angular density

is symmetric with respect to θ = π/2. For the angular locations and heights of the left two
peaks on the right panel of figure 2, induced by longitudinal oscillations, one has (0.52, 19.35)
and (0.76, 556.2). For the left panel of figure 3 we have taken a = 0.2 and for the right panel
n0 = 3. For both panels the values of the other parameters are the same as those on the right
panel of figure 1.
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Figure 1. The angular density of the number of the quanta, radiated per period of the transverse
motion on the harmonic n = 10, as a function of the angle θ. The dashed curves correspond
to the radiation in a homogeneous medium with dielectric permittivity ε1 and the full curves
correspond to the radiation from a charge rotating around a dielectric cylinder with permittivity
ε0 immersed in the same medium. The left panel corresponds to the radiation in the absence of
the longitudinal oscillations a = 0 and for the right panel a = 0.1, n0 = 2. For the values of the
other parameters we have taken ρc/ρe = 0.95, β1‖ = 0.35, β1⊥ = 0.9.

As it is seen from the graphs, the presence of longitudinal oscillations leads to the appearance
of new peaks in the angular density of the radiated quanta. The number of peaks is increasing
with the increase of the amplitude and frequency of the longitudinal oscillations.

4. Conclusion
We have investigated the radiation intensity of a charged longitudinal oscillator moving along an
helical trajectory around a dielectric cylinder. Similar to the case of coaxial circular motion under
certain conditions for the parameters of the trajectory and dielectric cylinder strong narrow peaks
appear in the angular distribution of the radiation intensity in the exterior medium. Instead of
a single peak in the case of a uniform coaxial circular motion, for an longitudinal oscillator set
of peaks appear. The increase of the oscillating amplitude leads to the increase of the number
of the peaks and the peaks are shifted to the direction of small angles. Heights of the peaks
may either decrease or increase compared with the case of the uniform motion. The frequency
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Figure 2. The same graphs as in figure 1 for a purely transverse motion: β1‖ = 0, β1⊥ ≈ 0.966.
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Figure 3. The same as in the right panel of figure 1. For the left panel a = 0.2, n0 = 2 and
for the right panel a0 = 0.1, n0 = 3. For both panels the values of the other parameters are the
same as those on the right panel of figure 1.

of the emitted quanta at the peaks depends on the angular location of the peak. In the case of
spiral motion the frequency increases due to the Doppler shift.
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