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Abstract.

A microscopic theory of the neutron, which consists in a neutron model constructed using
key relevant experimental observations as input information and the first principles solutions for
the basic properties of the model neutron, is proposed within a framework consistent with the
Standard Model. The neutron is composed of an electron e and a proton p that are separated
at a distance r1 of the order 10−18 m, and are in relative orbital angular motion and Thomas
precession highly relativistically, with their reduced mass moving along a quantised circular orbit
l = 1, j = 1

2 of radius vector r1 1

2

= r1 r̂1 1

2

about their mass centre. The associated rotational

energy flux has a spin 1
2

and resembles a confined antineutrino. The particles e, p are attracted
with one another predominantly by a central magnetic force produced as result of the particles’
relative precessional-orbital and intrinsic angular motions. The interaction force (resembling the
weak force), potential (resembling the Higgs’ field), and a corresponding excitation Hamiltonian
(HI), among others, are derived based directly on first principles laws of electromagnetism,
quantum mechanics and relativistic mechanics within a unified framework. In particular, the
equation for 4

3
πr3

1HI , which is directly comparable with the Fermi constant GF , is predicted
as GF = 4

3πr3
1HI = AoC0 1

2

/γeγp, where Ao = e2
�

2/12πε0m
0
em

0
pc2, m0

e, m
0
p are the e, p rest

masses, C0 1

2

is a geo-magnetic factor, and γe, γp are the Lorentz factors. Quantitative solution

for a stationary meta-stable neutron is found to exist at the extremal point r1m = 2.537×10−18

m, at which the GF is a minimum (whence the neutron lifetime is a maximum) and is equal to
the experimental value. Solutions for the magnetic moment, effective spin ( 1

2
), fine structure

constant, and intermediate vector boson masses of the neutron are also given in this paper.

1. Introduction
The neutron is a building particle of matter, as the proton and electron are. The neutron
distinguishes yet from the proton and electron prominently in its undergoing weak decay with
a notable non-conservative parity. In inverse proportion to the weak interaction strength
represented by the Fermi constant GF , the lifetime of a free neutron is of a finite 12 minutes
only. The Fermi constant GF combined with the Heisenberg relation indicates moreover a
weak interaction distance of an order 10−18m. Weak decay is a common property of all of the
other several hundred elementary matter particles observed in the laboratory except for the
proton and electron, by virtue of which process these particles are unstable, short lived. The
basic properties of the weak processes, foremost the neutron β decay, have been experimentally
studied extensively over the past eight decades or so, and summarised under the Standard
Model for elementary particles [1]. Theoretically, the weak decay of neutron and other particles
has been accounted satisfactorily for, most notably in quantitative prediction of the branching
ratio, by the unified renormalisable theories of weak interaction. The Glashow-Weinberg-Salam
(GWS) electroweak theory [2a-c] based on group SU(2) × U(1) is one of these. This theory
in particular also predicts the charged and neutral intermediate vector bosons W -,W+ and Z0
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which were confirmed by the experiments at CERN; its renormalisability was proven by t’Hooft
in 1971 [2d]. All of the current field theories of the neutron are essentially focused with the
neutron β decay, and are rested on the original hypothesis of Fermi[2e]. Namely that, in a
neutron (n) β decay reaction n → p + e + ν̄e, the matter particles proton p and electron e, and
the antineutrino ν̄e do not exist until the neutron n decays. And upon neutron decay, these
particles are envisaged as simply emitted by the neutron (as a point entity) in an analogous
way to an accelerated point charge emitting electromagnetic radiation. The current theory of
the neutron remains as a phenomenological one. There remain certain outstanding questions
yet to be resolved. In particular, the nature and origin of the weak interaction force are not yet
well understood, an equation of the weak force accordingly is yet to be derived, and the Fermi
constant GF is yet to be derived based on the interaction force. At a similar significant level,
the nature and the origins of the (anti)neutrino, the intermediate vector bosons, the Weinberg
weak mixing angle, and the Higgs mass are not yet fully well understood. One common feature
suggestive of the nature of the weak phenomena however is readily recognisable directly from
observations, namely that the weak phenomena present with (precede) only the electrons and
protons emitted from the baryon (n, Λ, etc) and meson (π, K, etc.) disintegrations or conversely
(succeed) ones upon the productions of the n, Λ, π, K, etc., but not with the same electrons and
protons in free-particle or bound atomic processes. Weak phenomenon has thus to do with the
internal structure of the weak emitting particles. For a more comprehensive understanding of
the nature of the weak phenomena, a microscopic theory would be indispensable. The purpose of
this paper is to develop a microscopic theory of the neutron, serving as a prototype of the weak
interaction (meta-)stabilised systems, based firstly on a realistic real-space model construction
of the neutron, such that the fundamental weak force and the variety of weak-interaction related
properties and phenomena can be predicted based on first principles solutions within a unified
framework of electromagnetism, quantum mechanics, and relativistic mechanics.

Using several key relevant experimental facts, in particular the neutron beta decay reaction
equation n → p + e + ν̄e, the neutron spin (1

2), the order of magnitude of the Fermi constant
GF and the so implied weak interaction distance ∼ 1 · 10−18 m as direct input information, we
propose at the outset of the theory development a real-space (e, p-) neutron model as follows:
The neutron is composed of an electron e and a proton p separated at a distance r(= r1) of
an order 10−18 m; see Fig 1a. The e, p are in relative orbital angular motion and in addition
a Thomas precession at a velocity approaching the velocity of light c, under a central force of
an electromagnetic origin. The central force is in effect predominantly an attractive magnetic
force produced by the magnetic fields (Bp, Be) of p, e at e, p as result of their intrinsic spin
and relative motions. The z-components (Sez, Spz) of the e, p spin angular momenta are aligned
parallel to each other and antiparallel to that of their relative motion (Jz- 1

2

, Figs 1b), so that the
magnetic interaction force is maximally attractive. The e, p relative motion is in such a way that
their reduced mass (M ) moves at a velocity (υυυ 1

2

) accordingly approaching c along a (quantised

l = 1, j = 1
2) circular orbit of radius r(= r1) about their (the e, p) common centre of mass

(CM), with a normal (n) at a precession-modified quantised angle (π−θ 1

2

for j spin down state)
to the z axis; see Fig 1b. The relative precessional–orbital angular momentum projected in z
direction (Jz- 1

2

) will show to be a negative half-integer quantum Jz- 1

2

= −1
2�. The corresponding

neutral rotational energy flux, or vortex, along the l = 1, j = 1
2 circular orbit, of accordingly a

z-component angular momentum Jz- 1

2

, resembles a ”confined antineutrino” (ν̄e).
It is commented that, the proposed e, p-neutron model suggests also a scheme for the strong

force similarly on a unified basis with electromagnetism: A proton p would be attracted with a
neutron n(e, p) (mainly) through an electrostatic attraction with the electron e of the neutron
at short range; in the same order of the short-range electrostatic interaction, two protons will
repel, but never attract with one another. Such characteristics are in accordance with the
observational fact that no nucleus exists which is made of more than one protons and protons
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Figure 1. Schematic of the model neutron composed of an electron e and a proton p. (a) The
e, p are separated by a distance r1 1

2

= r1r̂1 1

2

and are in relative angular motion and a Thomas
precession at velocity υυυ 1

2

under a magnetic interaction force F 1

2

in the magnetic fields Bp, Be

of p, e at e, p; their spins Sez , Spz (in units �) are aligned parallel, in the +z direction for the
mj = −j magnetic state shown, and antiparallel to Jz- 1

2

of graph (b). (b) The reduced mass M

of e, p moves at velocity υυυ 1

2

about the CM along a l = 1, j = 1
2 circular orbit of radius vector

r1 1

2

and normal n at angle π − θ 1

2

to the z axis; it has a z-component angular momentum Jz- 1

2

.
(c) Left: The e, p are located at positions re, rp, moving at velocities υυυe, υυυp, relative to the CM
in the CM frame (coordinates x, y, z in graph b), and at Re, Rp in the lab frame (coordinates
X, Y, Z). Right: vector relations between re, rp and r1 1

2

, and υυυe, υυυp and υυυ 1

2

. The drawings are
made for me � mp.

only without neutrons. The author’s more recent research (internal work) has further shown
that a microscopic representation of the muon and the ”muon-emitting” composite elementary
particles may be achieved within a consistent scheme with the neutron model. The system of
the so-represented elementary particles furthermore is in conformity with the quark model, in a
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manner that the (internal) spin states of the (composite) elementary particles are in one-to-one
correspondences with the configurations of the (observationally-never-isolatable) quarks. The
internal spin states of the model neutron under reversed signs (which represents the neutron
effective spin, see Sec 3), −1

2 ,−1
2 , 1

2 (i.e. ”down, down, up”), for example, directly correspond
with the ddu quarks. The (free) proton, as another example, is a non-composite particle with
only one spin state, assigned as +1

2 (spin up) by convention. But this may be translated into

a systematic three-spin states representation as 1
2 , 1

2 ,−1
2 (i.e. ”up, up, down”), by adding two

dummy spins 1
2 ,−1

2 without changing the original spin 1
2 ; the three spin states correspond

directly to the uud quarks.
The remainder of this paper gives a first-principles mathematical representation of the model

neutron, mainly in respect to the internal relativistic kinematics, dynamics (Secs 2), magnetic
structure (Sec 3), and a derivation of the internal e, p interaction force (Sec 4) of the neutron in
stationary state, the dynamics upon the neutron β decay (Secs 5), and a quantitative evaluation
of the dynamical variables (Sec 6). The (quantitative) predictions of the basic properties of
the neutron are subsequently subjected to comparisons with, or constraints by, the available
experimental data where in question, so that critical checks and controls of the viability of the
neutron model are made as far as possible. Other basic aspects, including the parity associated
with the β decay, a direct derivation of the intermediate vector boson masses and Weinberg
mixing angle of the neutron, and a corresponding dynamic scheme for the other (composite)
elementary particles participating weak interaction, will be elucidated in separate papers.

2. Equations of motion. Coordinate transformations. Solutions
2.1. Transformed Newtonian equations of motion of the mean and instantaneous positions of

e, p. Representation in r, R coordinates Consider that an electron e and a proton p comprising
a neutron are at time t located with the probability densities |ψα(Rα, t)|2 (α = e, p) at positions
Re, Rp relative to coordinates X, Y, Z fixed in the laboratory (lab) frame; see Fig 1c. (The usual
statistical point-particle picture suffices and is referred to here.) The e, p are in relative motion
at a velocity to prove high compared to c (Sec 6) under a mutual interaction force F and gravity
g ; no applied force presents. Their mean positions, R̄α =

∫
Rα |ψα|2d3Rα, evolve according to

the transformed Newtonian equations of motion,
d(mα (dR̄α/dt))

dt =
∫
(mαg ± F)|ψα|2d3Rα (the

correspondence principle), where me, mp are the e, p masses. The e, p are assumed to form a
bound stationary system until Sec 5 and hence feasibly move circularly at constant (tangential)
velocities (uα = dRα/dt). The equations of motion thus reduce to

me

d2Re

dt2
= meg + F , mp

d2Rp

dt2
= mpg − F . Or M

d2R

dt2
= M g , M

d2r

dt2
= F , (1)

where

R =
meRe + mpRp

M
, M = me +mp , r = Re−Rp = re−rp , M =

(
1

me
+

1

mp

)−1

=
memp

M
;

Re = R +
mp

M
r, Rp = R − me

M
r; re = Re − R =

mp

M
r, rp = Rp −R = −me

M
r. (2)

R is the position of the centre of mass, CM; M is the total mass located at R; r is the relative
position; M is the reduced mass (of a fictitious particle) located at r; and re, rp are the e, p
positions relative to R. Eqs (1c,d) are given for the masses M and M travelling accordingly
circularly at constant velocities (ucm = dR/dt relative to the lab frame and υυυ about the CM).
A common time t measured by a clock fixed at the CM has been used in order to facilitate the
direct transformation of Eqs (1a,b) to (1c,d). Corresponding directly with the dynamic effect of
d2Rα/dt2 on the left of Eqs (1a,b), this t enters as an independent variable of g, F: g = g(t),
F = F(t); the relativistic masses me, mp may remain as (implicit) functions of the local times
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(te, tp) at re, rp (Sec 2.2) in so far as the same masses are used through the equations. For the
e, p relative motions internal of a neutron are of major concern in this paper, unless specified
otherwise we shall work in the CM frame, i.e. immediately in terms of the relative positions
re, rp, r measured with respect to a set of relative coordinate axes x, y, z parallel with the X, Y, Z
axes, and with an origin fixed at the CM (cf Fig 1b). This in more general terms means that we
shall work with the unsuperscripted variables, including R, M, Re, me, t etc, which we hereafter
reserve to explicitly refer to ones measured in the CM frame. We shall refer to their counterparts
for example measured in the lab frame by Rlab, M lab, Rlab

e , mlab
e , tlab, etc. where in question.

The partial–relative and relative velocities of the e, p, and the corresponding rotational
angular momenta in the CM frame, in terms of the time t, follow as

υυυe =
dre

dt
=

mp

M
υυυ, υυυp =

drp

dt
= −me

M
υυυ, υυυ =

dr

dt
= υυυe − υυυp; (3)

Je = re × (meυυυe) =
mp

M
J, Jp = rp × (mpυυυp) =

me

M
J, J = Je + Jp = r× (Mυυυ) (4)

From the relations (2g,h) between the distances re, rp of e, p to the CM, and r of e to p it
follows that, by virtue how time in essence is defined, the local times te, tp and the time t for
light to traverse the distances re, rp, r at a constant velocity c are related as te = (mp/M )t,
tp = (me/M )t. The partial-relative velocities in terms of te, tp are

υυυ′
e = dre/dte = υυυ, υυυ′

p = drp/dtp = −υυυ. (5)

Denote ft(e) = t
te

=
|dre/dte|
|dre/dt| =

υ′
e

υe
. Substituting t = ft(e)te in (1a), setting R = 0, we

have me
d2re

d(f2
t (e)t2e)

= meg(t) + F(t), or me
d2re
dt2e

= mef
2
t (e)g(t) + f2

t (e)F(t) = meg(te) + F(te),

recovering the original form of (1a) expressed by its local time te provided F(te) = f2
t (e)F(t),

g(te) = f2
t (e)g(t). Similarly a factor ft(p) = t

tp
=

υ′
p

υp
will project (1b) to its original form

expressed in tp. The same projection factors, in the form of geometric mean f2
t = (f2

t (e)f2
t (p))1/2,

will be obtained through direct derivation of the magnetic force in Sec 4.
2.2. Lorentz-Einstein transformations The instantaneous rest frame fixed to each rotating

particle, e, p, M or M , may be regarded as an inertial frame for each differential rotation which
is essentially linear. (For a complete macroscopic rotation, non-inertial frame effects present and
will be included separately, see Eqs (11) vs (12) below and in turn Sec 2.4). Subsequently, the
differentials of the space and time coordinates re, te; rp, tp; r, t; R, t̄ep in the CM frame, and
their counterparts r0

e, t0e; r0
p, t0p; r0, t0; R0, t̄0ep in the respective (instantaneous) rest frames are

related by the Lorentz-Einstein transformations,

γe(dre−υυυ′
edte) = dr0

e, γe(dte−υυυ′
e · dre

c′2
) = dt0e; γp(drp−υυυ′

pdtp) = dr0
p, γp(dtp−

υυυ′
p · drp

c′2
) = dt0p;

γ(dr−υυυdt) = dr0, γ(dt−υυυ · dr
c2

) = dt0; γM(dR−υυυMdt̄ep) = dR0, γM(dt̄ep−υυυM · dR
c′2

) = dt̄0ep(6)

where γα = (1 − υ′
α

2/c′2)−1/2 (α = e, p), γ = (1 − υ2/c2)−1/2, γM = (1 − υ2
M/c2)−1/2;

c′ = drαpht
/dtα = c = drpht/dt is the light speed measured in the CM frame; γM, γ are the

(effective) Lorentz factors of the fictitious particles of masses M, M moving effectively at the
velocities υυυM, υυυ, such that their dynamical consequence is the same as that due to the motions
of me, mp relative to the CM. In particular, υυυM needs be thought of as the speed of the CM

relative to the e, p, i.e. υυυM = dR
dt̄ep

given in terms of a mean local time t̄ep of e, p; the CM is not

moving relative to itself.

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012056 doi:10.1088/1742-6596/670/1/012056

5



Transformations from the scalar distances re, rp, R, r to r0
e, r

0
p, R

0, r0 at fixed t (hence
te, tp, t̄ep), from the time t to t0 at fixed r, and from the CM-frame masses me, mp, M , M
to their respective rest-frame counterparts m0

e, m
0
p, M

0(= m0
e +m0

p), M
0(= m0

em
0
p/M

0) follow as

γere = r0
e, γprp = r0

p, γMR = R0, γr = r0; γt = t0; (7.1)

me = γem
0
e, mp = γpm

0
p, M = me + mp = γMM 0, M = γM 0. (7.2)

Using Eqs (7.2) for me, mp, M , M in (2b),(d) gives (8), and solving gives (9) below:

γMM 0 = γem
0
e + γpm

0
p, γMγ = γeγp; or M 0 = m†

e + m†

p, where (8.1)

m†

e =
me

γM

= γ†

em
0
e, m†

p =
mp

γM

= γ†

pm
0
p, γ†

e =
γe

γM

, γ†

p =
γp

γM

; γ†

eγ
†

p =
γeγp

γM
2

=
γ

γM

= γ† (8.2)

γe =
γM(M 0 ± K)

2m0
e

, γp =
γM(M 0 ∓ K)

2m0
p

, K =
√

(M 0)2 − 4m0
em

0
pγ

†. (9)

For (9) to have real solutions requires (M 0)2−4m0
em

0
pγ

† ≥ 0, or γ† ≤ (γ†)max = (M 0)2/4m0
em

0
p =

459.556, where γ† = (γ†)max if K = 0, in which case γe = γMM 0/2m0
e, γp = γMM 0/2m0

p � 1
2γM,

me = mp. In general me and mp may not be equal. Let me = kmp; this combined
with (9a) gives (me =)kmp = γem

0
e = 1

2γM(M 0 + K). Dividing it by (9b) times m0
p, i.e.

(mp =)γpm
0
p = 1

2γM(M 0 − K) gives (10a,b), and re-arranging (9c) gives (10c) below,

k =
M 0 + K

M 0 − K
, or K =

(k − 1)M 0

k + 1
; γ† =

(M 0)2 − K2

4m0
em

0
p

=
k(M 0)2

(k + 1)2m0
em

0
p

(10)

Substituting in these k = me/mp = 1.3165 from the solution for neutron magnetic moment

(Sec 3) gives K = (1.3165−1)
1.3165+1 938.78(3) = 128.26(5) GeV, and γ† = 450.96(0). Eqs (2g),(h) and

(3a),(b) for this case become re = r

k+1 = 0.43r, rp = − kr
k+1 = −0.57r; υυυe = 0.43υυυ, υυυp = −0.57υυυ

(cf Fig. 1c, right graph). k>
∼1 implies γe, γp >> 1.

Multiplying γeme

γe+1 to the quadratics of Eq (3a), and
γpmp

γp+1 to that of (3b), adding, we obtain

on the left side the total kinetic energy Te + Tp of e,p measured in the CM frame and in time t,

(Te + Tp ≡)
γemeυ

2
e

γe + 1
+

γpmpυ
2
p

γp + 1
=

[
γemp

(γe + 1)M
+

γpme

(γp + 1)M

]
Mυ2(≡ T ) (11.1)

for γe, γp >> 1 : meυ
2
e + mpυ

2
p = Mυ2 (11.2)

The right side of (11.1) or (11.2) expresses the kinetic energy T of the reduced mass relative
to the CM. Eq (11.1) or (11.2) expresses invariance of kinetic energy under the re, rp to r, R
coordinate transformation as described in the CM frame and in time t. Performing similar
operations to Eqs (5a,b) instead we obtain on the left side the total kinetic energy T ′

e + T ′
p of

e,p measured in the CM frame but in their local times te, tp,

(T ′
e + T ′

p ≡)
γeme

γe + 1
υ′

e
2 +

γpmp

γp + 1
υ′

p
2 =

[
γeme

(γe + 1)M
+

γpmp

(γp + 1)M

]
Mυ2(≡ T ′) (12.1)

for γe, γp >> 1 : meυ
′
e
2 + mpυ

′
p
2 = Mυ2 (12.2)

The right side of (12.1) or (12.2) represents in effect the kinetic energy T ′ of the total mass at
the CM relative to the e, p local space and time coordinates. Since M > M , so T ′

e+T ′
p > Te+Tp.

The difference (T ′
e + T ′

p) − (Te + Tp) apparently represents a kinetic energy contribution from
the non-inertial frame motion at re, rp relative to the CM.
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Unless specified otherwise we shall hereafter suppose for simplicity the e, p system as a whole,
i.e. its CM, to be at rest in the lab frame. Provided further setting the coordinate origins of
the CM and lab frames the same, hence R = 0, the relativistic effects in the two frames are the
same.

2.3. Total mass as measured in the lab frame. Neutron mass For the centre of mass CM
of the e, p system assumed at rest in the lab frame, naturally an observer in the lab frame will
measure a rest total mass M lab = M 0 = m0

e + m0
p of the model neutron. In more elaborate

terms, a measurement of the neutron mass in the laboratory is typically made in a specified
say X direction over a macroscopic time interval Δt which is >> 2πr/υ, the rotation period of
M (Secs 2.4, 6). During Δt, υυυe, υp explore all directions each with a zero average projection
in the X direction. Hence the relativistic augments in the masses of e, p as measured along
the instantaneous directions υυυe, υp in the CM frame do not enter the mass M lab(= mlab

e + mlab
p )

measured in the lab frame. (This mass augment however evidently enters the interaction force
or potential of Sec 4, which has a constant magnitude so as to manifestly effectuate a bound
e, p in stationary state irrespective of the direction of the e, p separation.)

A dually relevant example here is electron scattering by a target neutron. In respect to the
internal dynamics of a target neutron, an incident electron e travelling in a fixed direction is
as a (moving) observer in the lab frame. The incident e thus will see the rest (as contrasted
to relativistic) masses of the e, p of the neutron. Moreover, the e, p of the neutron are fast
rotating along circles of similar radii about their CM and thus about equally exposed to the
incident e. So in terms of exposure frequency, the e, p would equally probably scatter with the
incident e, through electro and magnetic potentials and naturally at their contracted radii ae, ap.
The scattering potential from the proton p of the neutron, on the other hand, would dominate
because of its much heavier rest mass, which for the electrostatic part at least is attractive.
Incidentally, the experimentally measured electron-neutron scattering length is negative and
suggests an attractive scattering potential.

The (very large) e, p interaction potential fields within the neutron, on the other hand,
are liable to (considerably) modify the vacuum potential surrounding the e, p charges; the
effect would be particularly large given the e, p separation distance 10−18 m (Sec 6) here is
comparable with the inter-vacuuon distance based on the ”vacuuonic vacuum structure”a. This
would consequently further modify the e, p particles’ rest masses, in terms of the IED modelb,
produced as their generating charges move through this modified vacuum. (a, b: see the author’s
earlier published work). The above gives a qualitative account for the (order of MeV) larger
neutron rest mass over the sum of the e, p rest masses; this difference is relatively small and is
ignored where in question throughout this paper.

2.4. Eigenvalue equations. Orbital and precessional angular momenta. Antineutrino In
the absence of applied force and omitting the very weak gravity, M is free and hence not
directly subject to quantisation condition. We thus need only to establish the relativistic
Schrödinger or Klein-Gordon equation (KGE) for the reduced mass M , in terms of the spherical
polar coordinates r, ϑ, φ transformed directly from x, y, z. The KGE has the usual form
[((Etot)op − V )2 − M 02c4 − (p2)opc

2]ψtot = 0, where (Etot)op − V = M c2; the associated non-
inertial frame effect is not contained in it and will be included separately. Since the mass M
under consideration is moving at velocity exceedingly close to c such that its rest-mass energy
is negligibly small compared to its kinetic energy (Sec 6), more relevant here is the square-root
(SQR) form of the KGE: Hopψ = Hψ, where Hop = ((Etot)op − V ) − M 0c2 + V = Top + V ,

and Top = M c2 − M 0c2 = (γ − 1)M 0c2 =
(γ−1)γ(p2)op

γ2(υ/c)2M =
γ(p2)op

(γ+1)M (with γ2(υ
c )2 = γ2 − 1)

are the Hamiltonian and kinetic energy operators associated with the kinetic motion of M ;

(p2)op = (p2
r)op +

(J2)op

r2 ; (p2
r)op and (J2)op are the squared radial and orbital angular momentum

operators. For the e,p interaction potential V being central (Sec 4), hence V (r) = V (r), the wave
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function of M , ψ(r, ϑ, φ), may be written as ψ = R(r)Y(ϑ, φ). And the SQR-KGE separates
into two eigenvalue equations,[

− γ�
2

(γ + 1)M r2

∂

∂r
(r2 ∂

∂r
) +

γl(l + 1)�2

(γ + 1)M r2
+ V (r)

]
R(r) = HR(r) (13)

(J2)opY(ϑ, φ) = J2Y(ϑ, φ), (J2)op = −�
2

(
∂2

∂ϑ2
+ cotϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂φ2

)
. (14)

(14) may be solved without V (r) being explicitly known. The eigen functions are the spherical
harmonics, Y

ml
l = Cml

l Pml
l (cosϑ)eimlφ . The square-root eigen values and their z components

are

Jl = |rl × (M υυυtl)| =
√

l(l + 1) �, Jzml
= Jl cos ϑml

= ml�, l = 0, 1, . . . ; ml = 0, . . . , ∓l. (15)

Based on the semiclassical expression rl × (Mυυυtl), the particle of mass M in lth state executes
an orbital angular motion along a circular orbit l of radius vector rl at a tangential velocity
υυυtl = drl/dt = ωωωo × rl, ωωωo = rl × υυυtl/r2

l ; rl ≡ rn for all l(= 0, 1, . . . , n − 1) values of the same
principal quantum number n. The normal of the orbital plane or the axis of rotation no passes
through the CM and is at a quantised angle ϑml

to the z axis.
Owing to their having a finite acceleration al = −|d2rl/dt2|(rl/rl) in radial direction here, as a

well-known non-inertial frame effect the e, p in addition execute a Thomas precession (TP), with
an instantaneous angular velocity denoted by ωωωTP and thus angular momentum JTP = r2

l MωωωTP .

ωωωTP = γ2

(γ+1)

al×υυυtl
c2 according to LH Thomas (1927), as may be alternatively derived directly

based on (transformed) infinitesimal Newtonian inertial-frame and hence linear motion combined
with acceleration in infinitesimal time (internal work). ωωωTP is in the instantaneous direction
al × υυυtl ∝ −rl × υυυtl = −JJJl/M , i.e. opposite to JJJl, describing an instantaneous rotation in
opposite sense to the orbital angular motion underlining JJJl. For a quantum system as the bound
e, p here, the z component of JTP , JTPz, will be necessarily constrained such that both the space
quantisation conditions (15) above and (16) below are met.

The total, precessional-orbital angular momentum Jj = |JJJl − JTP | and its z component
Jzmj = Jzml

− JTPz = Jj cos θmj are given according to the quantum vector addition model as

Jj = |rlj × (M υυυj)| = rlM υj =
√

j(j + 1) �, j = l − lTP = 0,
1

2
, 1,

3

2
, . . . (16.1)

Jzmj
= Jj cos θmj = ∓Jj cos θj = mj�, mj = ∓j, (16.2)

where the permitted j values are results of the general solutions of the quantum commutation
relation for the angular momentum J here, J × J = i�J. rlj = rlr̂lj is the quantised radius
vector of the instantaneous circular orbit l of a normal or axis of rotation n; n is at a fixed angle
θmj = arccos (Jzmj /Jj) to the z axis and rotates about the z axis at the angular velocity ωωωTPz

in opposite sense to that of the ωo-orbital angular motion projected in the xy plane, whence
the Thomas precession; see Fig 1b. The magnitude of rlj, |rlj| = rl is unchanged subjected
to the radial eigenvalue equation (13) but immediately to the quantum equation (15a) here.
υυυj = drlj/dt = ωωω×rlj; ωωω = rlj ×υυυj/r2

l = |ωωωo−ωωωTP |n is the precessional-orbital angular velocity.
For facilitating later discussion we attach as in Fig 1b the axes x′, y′, z′ to the instantaneous
rest frame of the precessional orbit l, with their origin coinciding with that of x, y, z, i.e. fixed
at the CM. So the x′, y′, z′ axes precess about the z axis at the angular velocity ωTPz, in
counterclockwise sense for the mj = −j state in the figure, in such a way that the z′ axis
maintains at fixed angle θj to the z axis, the x′ axis at fixed angle θj to (its projection x′

xy in)
the xy plane and along the rlj direction, and the y′ axis in the xy plane. And we attach the
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x′′, y′′, z′′ axes to the instantaneous rest frame of the precessing-orbiting particles e, p with an
origin fixed at the CM too, the z′′ axis coinciding with z′, and the x′′ axis lying along the line
joining the e, p; see Fig 1a,b. So the x′′, y′′ axes rotate in the x′y′ plane and about the z′ (z′′)
axis, in clockwise sense for the mj = −j state, at the angular velocity ωo + ωTP relative to the
x′, y′ axes.

From Eq (16.1b), it follows that the permitted lTP values are uniquely specified once l, j
are specified according to (15),(16): For l = 0, only lTP = 0 is permitted; and j = l = 0.
This gives an e, p system not magnetically bound at a separation of the order 10−18 m (see
further Sec 4); a bound state would in principle be achievable at much larger separation as
a hydrogen only. For any non-zero integer l values, lTP = 0 is permitted formally by (16.1)
but is however unphysical because of the so implied absence of Thomas precession. lTP = 1

2
is therefore the smallest finite and hence physical value which is also permitted based on the
quantum solutions for l, j. Moreover, lTP = 1

2 is itself a solution for JTPz to separately satisfy
the quantum commutation relation JTPz × JTPz = i�JTPz; this establishes a condition for the
carrier of JTPz, the neutral rotational energy flux (to be identified as the antineutrino) to be
created or emitted as a quantum particle. Higher half-integer or integer lTP values satisfying
(16.1) and (15) are permitted in theory but are not liable for a neutron candidate and will not
be considered. For the permitted l and lTP = 1

2 , Eqs (16) are written as

Jj = rlM υj =
√

j(j + 1) � =

√
(4l2−1) �

2 , j = l − 1
2 = 1

2 , 3
2 , . . .; (16.1)′

Jzmj
= Jj cos θmj = mj� = (∓|ml| ± 1

2)�, mj = ∓j = ∓|ml| ± 1
2 = ∓1

2 , . . . ,∓j, (16.2)′

where cos θmj =
Jzmj

Jj
= ∓2l±1√

4l2−1
. For j = 1

2 , mj = ∓1
2 :

J 1

2

= |r1 1

2

× (Mυυυ 1

2

)| = r1Mυ 1

2

=
√

3 �

2 , Jz∓ 1

2

= r1Mυ 1

2

cos θ∓ 1

2

= ∓�

2 ; (17)

cos θ 1

2

= Jz 1

2

/J 1

2

= 1/
√

3; θ 1

2

= arccos(1/
√

3) = 54.7o. The j = 1
2 (l = 1) states describe

a ground-state neutron (Secs 3, 4). Eq (17a) thus gives the e, p relative precessional–orbital
angular momentum internal of the neutron, and (17b) the two possible z components associated
with a minimum-energy (mj = −1

2 ) and excitation (mj = 1
2 ) state in an applied magnetic field

in the +z direction (see Sec 3). The precessing circular orbit of the mass M has the quantised
radius vector r1 1

2

about the CM in the x′y′ plane. For the mj = −1
2 state, the normal n of

the rotation plane, and hence J 1

2

, is at angle θ- 1

2

= π − θ 1

2

to the z axis, the rotation being in

clockwise sense, as shown in Fig 1b. And conversely for mj = 1
2 . For the next orbital, j = 3

2

(l = 2), Jz 3
2
/J 3

2
= 3/

√
15, θ 3

2
= 39.2o.

For the neutron existing (in zero applied field) only in a single non-degenerate state
j = l − 1

2 = 1
2 and presuming that, in terms of the SQR-KGE here, energies of different l and

same n are degenerate, then N (the radial degree of freedom)= 0 and n = N+l+1 = 0+l+1 = 2.
So Trl|l=n−1=1 = 0; and the total kinetic energy of M is, with J2

1

2

(= (JJJ1 − JTP )2) for J2
1 and T

in place of T, T 1

2

= Tt 1

2

= γ
(γ+1)Mυ2

1

2

= γ
(γ+1)(J

2
1

2

/M r2
1) = 3γ�

2M
4(γ+1)mempr2

1
. Accordingly, the eigen

energy (Hamiltonian) Hj = Tj +Vj , in place of Hl=n−1 = Tl=n−1 +Vl=n−1 (where Hl=n−1 ≡ Hn,
etc.), may be directly computed from the sum of the Tj given above and the Vj to be derived in
Sec 4, without formally solving the radial differential equation (13).

The precessional–orbital motion (propagation) of the e, p particle waves ψe, ψp relative to one
another, or alternatively of the matter wave ψ of M relative to the CM, is associated with a
neutral precessing-orbiting — simply rotational kinetic energy flux, or vortex, on disregarding
their charges and also their rest-mass energies. This vortex entity carries a spin angular
momentum with a z component equal to one unit of half-integer quantum Jz∓ 1

2

= ∓1
2�, has
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apparently a positive helicity, and therefore resembles directly an antineutrino (ν̄e) confined
within the neutron; see further Sec 5. Accordingly the z-component spin angular momenta of
ν̄e are

Sν̄ez = Jz∓ 1

2

= ∓1
2� = ∓sν̄e�, sν̄e = 1

2 . (18)

3. e, p system magnetic structure. Neutron magnetic moment, (effective) spin
3.1 e, p spins and magnetic moments. Neutron internal spin configurations. Total

spin Either particle α = e or p has an intrinsic spin sα = 1
2 , spin angular momentum

Sα =
√

sα(sα + 1) � =
√

3
2 � about a spin axis nα passing through rα, and z component

Sαz = Sα cos θs
α = ±sα�. For the spin up state as in Fig 1a, cos θs

α = Sαz/Sα = 1/
√

3; the
spin axis nα is at fixed angle θs

α = 54.73o to a zs
α axis parallel with z and passing through rα.

Certain external, random environmental in the case of zero applied, magnetic field would always
present and thus define the (instantaneous) z direction here. For computing the magnetic field
produced by the spin motion of one particle α at the other particle (α′), Bs

α (Eq 30b for α = p,
Sec 4) at a separation rl comparable to the sizes of their charges (Secs. 4, 6), it is appropriate
to treat the e, p charges as extended objects, firstly simply as spheres of radii ae, ap with specific
mass and charge distributions. We assume that the mass mα of either particle α is distributed
predominantly within its charge (and thus by a negligible amount in its wave field), with a
volume density ρα(ξξξα) at a distance ξξξα from rα; dmα = mαρα(ξξξα)d3ξξξα is a mass element at ξξξα.
So Sα formally is given rise to by the angular motion of the sphere about nα at the angular
velocity ωs

α = dφs
α/dtα, tangential velocity υs

α = aαωs
α as,

Sα = mα

∫ |ξξξα × υυυs
α|ρα(ξξξα)d3ξξξα = 1

gα
a2

αωs
αmα =

√
3

2 �; Sαz = 1
gα

a2
αmαωs

α cos θs
α = 1

2� (19)

where gα is the Lande g factor of particle α. And the charge qα of either particle α is distributed
along a circular loop of radius aα with a normal parallel with nα. The spin (dipole) magnetic
moment μs

α of particle α is accordingly produced by the current loop of charge qα, area πa2
α,

and angular velocity ωs
α in the ∓Sα direction for qα = ∓e. The z components, written for e, p

explicitly, are

μs
ez = e

ωs
e

2π
πa2

e cos(π − θs
e) = −geeSez

2me

= −gee�

4me

; μs
pz =

gpeSpz

2mp

=
gpe�

4mp

(20)

For either particle α, besides the zs
α above we further specify the local axes xs

α, ys
α to be

parallel with the x, y but with an origin located at rα. Its spin axis nα as projected in this xs
αys

α

plane is unspecified in orientation according to the uncertainty principle, and in the external
magnetic field in z direction would rotate about the zs

α axis. Accordingly the direction of υυυs
α at

any fixed point on the current loop varies over time as the current loop precesses. Since the z
component Sαz of Sα is a constant (Eq 19b), the projection of υυυs

α in the xs
αys

α plane is a constant:
υs

αxy
= (aα cos θs

α)ωs
α = υs

α cos θs
α; this gives also the time average of υυυs

α, for the projection of υυυs
α

in z direction averages to zero over time. For deriving an effective algebraic equation for the
magnetic field produced by the spin current loop (Sec 4), the distinct symmetry property of the
system will be utilised to further reduce the system to a two point half-charge representation
(Appendix A).

3.2 e, p system spin configuration. Total spin angular momentum For the e, p to be in a
bound, minimum (internal magnetic) energy state (Sec 4), apart from the specific j = 1

2 and

mj = ∓1
2 values (Sec 2.4), Sez, Spz need be parallel mutually and each antiparallel to Jzmj (Figs

1a,b; 2a,b). Sez, Spz, Jzmj may therefore assume two possible configurations

(i) Sez = 1
2�, Spz = 1

2�, Jz- 1

2

= −1
2�; (ii) Sez = −1

2�, Spz = −1
2�, Jz 1

2

= 1
2� (21)
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1
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2

Figure 2. Internal angular momenta Se, Sp, Jmj of the model neutron with the internal spin

configurations (a) se, sp, mj = 1
2 , 1

2 ,−1
2 in effective spin down state snσn = mj = −1

2 , and (b)

se, sp, mj = −1
2 ,−1

2 , 1
2 in effective up state σnsn = mj = 1

2 . Insets in (a),(b): schematics of the
corresponding z-component neutron magnetic moments μμμnz as the respective vector sums of the
internal component moments along z direction.

as shown in Figs 2a,b.
Based on the usual vector addition model, the total angular momentum of the e, p system,

denoted by J
jn

, in the precessional-orbital state j = 1
2 are

J jn
=

√
jn(jn + 1)� =

√
3

2 �, jn = (se + sp) − j = (
1

2
+

1

2
) − 1

2
=

1

2
(22)

Its z components J zmjn
for the mjn = ±jn states are

J z± 1

2

= (Spz + Sez) up
down

+ Jz∓ 1

2

= [±( 1
2 + 1

2 ) ∓ 1
2 ]� = ±1

2�. (23)

3.3 Total magnetic moment The differing g factors and potentially also asymmetric relative
positions of e, p suggest an asymmetric internal magnetic structure of the e, p system. One thus
expects a total magnetic moment which is not simply related to J zmjn

of Eqs (23) as for a

simple particle; nor would it be zero as implied by its zero net charge as both given by the
direct sum of the e, p charges here and from experimental observation. We shall find the total
magnetic moment based directly on vector addition of the individual magnetic moments along
the z direction below. For the spin configuration (i) of Eqs (21), the z-component total magnetic
moment of the e, p spins is the vector sum

μs
z = μs

pz + μs
ez =

gpeSpz

2mp
− geeSez

2me
= (gp − ge

k
)
eSpz

2mp
, (24)

where the last of Eqs (24) is given after substituting me = kmp (as in Sec 2.2) and Sez = Spz. k
may in general differ from 1. So the relative precessional-orbital motion may contribute a finite
moment given by the vector sum, for the case (i) or mj = −1

2 ,

μorb
z- 1

2

=
eJpz- 1

2

2mp
− eJez- 1

2

2me
=

e(me
M )Jz- 1

2

2mp
− e(

mp

M )Jz- 1

2

2me
=

(
k − 1

k

)
eJz- 1

2

2mp
(25)

where Jαzmj are the z-projections of Jαj given after Eqs (4a,b); a g factor equal to 1 is assumed.
The total z-component magnetic moment of the e, p system is the vector sum

μz- 1

2
φ = μs

z + μorb
z- 1

2

= (gp − ge

k
)
e(−Jz- 1

2

)

2mp
+

(
k − 1

k

)
eJz- 1

2

2mp
= −gneJz- 1

2

2mp
, (26a)
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gn = gp − ge

k
− k − 1

k
(26b)

where in the expression of μs
z we substituted Spz = −Jz- 1

2

; Jzmj , instead of J zmjn
, is used for

reason to be explained below. The subscript φ indicates that the total μz- 1

2
φ, as the μs

pz, μs
ez

and μorb
z- 1

2

, is as directly probed by a detector placed at the CM relative to which the e, p are

moving in the υυυe, υυυp or φ directions, in which case the relativistic masses me, mp in Eq (26a)
remain physical.

An experimenter (as an external observer) in the laboratory on the other hand commonly
probes the neutron magnetic moment by applying a magnetic field to turn the moment along
the θ direction, typically at a speed uθ << c. This is to turn the e, p system as a whole
here, or manifestly the e, p precessional-orbital plane about the y′ axis along the θ direction
in the x′z′ plane, i.e. in a direction perpendicular to υυυe, υυυp. So immediately for the proton

γpθ = (1 − u2
pθ/c2)−1/2 � 1, mp(upθ) = γpθm

0
p � m0

p; the proton dominates the turning process
because of its much larger rest-mass moment of inertia. The electron can only be turned in the
same rigid precessional-orbital plane as the proton in a bound relativistic dynamic process, its
mass (hence moment of inertia) must therefore manifestly be weighed by the same factor k as
in this relativistic process, i.e. as me = kmp, not as m0

e. The only means of correctly carrying
the factor k through to the experimenter’s result (Eq 27 below) is to convert me to kmp before
transforming to Eq (27), as has been done in (26a). Substituting m0

p in place of mp in the last
of Eqs (26a), and accordingly μz- 1

2

in place of μz- 1

2
φ, gives therefore the z-component magnetic

moment of the model neutron, μnz , as probed by the experimenter, for the mj = −1
2 state

μnz(mj = −1
2 ) = μz- 1

2

= − gneJz- 1

2

2mp(upθ)
= −gneJz- 1

2

2m0
p

=
gne�

4m0
p

=
1

2
gnμN , (27)

where μN = e�

2m0
p

(the nuclear magneton). Similarly for the mj = 1
2 state we obtain

μnz(mj = 1
2 ) = μz 1

2

= −gneJz 1

2

/2m0
p = −1

2gnμN . gn represents the g factor of the model neutron.

Equating gn of (26b) with the experimental value gexp
n = 3.8261, and using the experimental g

values of e, p, gp = 5.5857, ge = 2, numerical solution for k is obtained as k = 1.3165. According
to (27) or (26a), μz- 1

2

> 0, i.e. μz- 1

2

points in the +z direction, and is in the opposite direction
to Jz- 1

2

(Fig 2a). And μz 1

2

< 0 (Fig 2b). Clearly, the magnetic moment of the model neutron is
dominated by the proton spin magnetic moment because of the asymmetrically much larger gp

over ge. From k > 1 and hence me > mp, rp > re (by a small amount each), it follows that μorb
z- 1

2

points in the −z direction, adding a negative but small term to μz- 1

2

.
3.4 Effective spin of the neutron In an applied magnetic field say B0 in +z direction, the

magnetic-interaction energy of the e, p system with the field is Uj = −μμμj · B0 = −μzmj B0.

Uj < 0 for the spin configuration (i) of Eqs (21) or the mj = −1
2 state, and Uj > 0 for (ii)

or the mj = 1
2 state. That is, (i) or mj = −1

2 corresponds to the minimum-energy state and

(ii) or mj = 1
2 the excited state in the applied field. A transition from the minimum-energy to

excited state corresponds to a flip of the spin-configuration (i) to (ii) of the bound e, p system
as a whole, which is dictated, and thus manifested by the flip of the processional-orbital plane
from the mj = −1

2 state to mj = +1
2 . In other terms, μz- 1

2

is as if produced by a negative

charged current loop in spin up state, or alternatively by a positively charged current loop in
spin down state. In so far as the total magnetic moment of the e, p system as a whole, whence
the model neutron, is probed, it is therefore physical to assign to it an effective spin sn and spin
vector σn, corresponding directly to the j and mj = ∓j values (rather than the jn and mjn). So
the effective neutron spin angular momentum Sn, its z components Snz, and accordingly μzmj
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in relation with Snz, given by substituting Snz for Jzmj in (27), are

Sn =
√

sn(sn + 1)� ≡ Jj =

√
3

2
�, sn = j =

1

2
; Snz = σnsn� ≡ Jzmj

= mj� = ∓1

2
�,

σn = ∓1 (for mj = ∓1
2 ); μnz = −gneSnz

2m0
p

= −gnσnsne�

2m0
p

≡ μzmj
= ±gne�

4m0
p

(28)

Notice that for either spin configuration the Sn, Snz are equal to J jn
, J zmjn

in magnitudes but

opposite in directions. The magnitude of Sn or J zmjn
, being a one-half integer quantum, has the

absolute significance that it identifies the neutron as a fermion in accordance with observation.
The assignment of the effective spin parameters sn, σn above is in direct conformity with the role
of the Standard Model neutron spin with respect to the experimental determination of neutron
magnetic monument based on magnetic resonance method [1f].

4. e, p electromagnetic interaction. Weak interaction force
We shall below derive for the electron e and proton p comprising the model neutron in stationary
state their interaction force F, the corresponding potential V and Hamiltonian H based on
first principles laws of electromagnetism and (the solutions of Sec 2 of) relativistic kinematics
and quantum-mechanics. We shall continue to work in the CM frame, i.e. in terms of the
unsuperscripted mass and space-time variables which will directly enter the electromagnetic
interactions below, and for simplicity the time t instead of te, tp; the local time te, tp effect will

be included in the end by a projecting factor (f2
t ). In this section, r or rlj refers to the e, p

separation distance starting at rp, ending at re, as in Figs 1a, c; its magnitude is equal to that
of r or rlj of Sec 2.4, Fig 1b.

Consider the e, p system in a precessional-orbital state j = l − lTP , mj = −j, with the
e, p spins Spz, Sez in the +z direction, i.e. antiparallel with Jz-j (as in Figs 1a,b or Fig 2a for
j = 1− 1

2 = 1
2 , mj = −1

2 ). Firstly, the proton of a charge +e produces at the electron at rlj apart
a (transformed) Coulomb field Ep(rl) = (e/4πε0r

2
l ) r̂lj (in SI units here and below); r̂lj = rlj/rl

is a unit vector pointing from p to e. |Ep| is amplified from its rest-frame value E0
p by a factor

∝ (1/r2)/(1/(r0)2) = γ2 = 1/fc and hence has a narrowed profile at a point r perpendicular to its
motion φ direction by an inverse factor, fc. And so are the magnetic fields below. Furthermore,
the proton is in relative precessional–orbital motion in clockwise sense at the tangential velocity
υυυp about the CM in the x′y′ plane, and in spin motion at the tangential velocity υυυs

pxy
in the

xs
py

s
p plane (Sec 3.1). The latter, after a projection on to the x′y′ and hence x′′y′′ plane, may

be effectively represented (Eq A.3, Appendix A) as two point half-charges located at −ā, ā from
rp on the x′′ axis and moving oppositely at velocities −ῡs

p
′′, +ῡs

p
′′ in −y′′, +y′′ directions. So p

produces at e magnetic fields Borb
p (= −υυυp × Ep/c2) and Bs

p(rl ± ā)(= ±|ῡs
p
′′ × Ep(rl ± ā)|/c2)

along the z′ direction given as (the transformed Biot-Savart law),

Borb
p (rl, θj) =

eυυυp × rlj

4πε0c2r3
l

= −erlj × (−memp

M )υυυj

4πε0mpc
2r3

l

= −
√

4l2 − 1 e� ẑ′

8πε0mpc
2r3

l

; (29)

Bs
p(rl ± ā, θj) =

∓1
2eῡυυs

p
′′ × (rlj/rl)

4πε0c2(rl ± ā)2
, Bs

p(rl, θj) = Bs
p(rl − ā, θj) + Bs

p(rl + ā, θj) =

=
eāῡυυs

p
′′ × (rlj/rl)

2πε0c2r3
l (1− ā2

r2
l
)2

=
−η2gpe� cosθj ẑ

′

4πε0mpc
2r3

l C1l

, C1l=
(
1 − ā2

r2
l

)2
(30)

The last of Eqs (29) is given after substituting (3b) for υυυp and (16.1)′ for rlj × (
memp

M )υυυj , given

for lTP = 1
2 . The last of Eqs (30b) is given after substituting (A.1a), (A.3b) for ā, ῡs

p
′′, a for ap,
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and (19) for aυs
pmp cos θs

p/gp(=
1
2�). The negative signs in the two final results indicate Borb

p ,
Bs

p to be in the −z′ direction each.

In the Ep and Borb
p + Bs

p = Bp fields of the proton (cf Fig 1a), the electron at rlj apart, with
an effective charge qe = −fce, and in precessional–orbital and spin motions at the tangential
velocities υυυe about the CM and ῡs

e
′′ about re in clockwise and counter-clockwise senses in the

x′y′ plane, is acted by an electromagnetic force along the rlj direction according to the Lorentz
force law,

Fpe(rl, θj) = −fceEp(rl) + f2
t [Forb−orb

pe,m (rl, θj, t) + Fs−orb
pe,m (rl, θj, t) + Fs−s

pe,m(rl, θj, t)], (31)

where Forb−orb
pe,m = −eυυυe×Borb

p = −e|rlj × (
memp

M υυυj)||Borb
p | r̂lj

merl

= −(4l2 − 1)e2
�

2 r̂lj

16πε0mempc
2r4

l

, (32)

Fs−orb
pe,m = −eυυυe × Bs

p = −e|rlj × (
memp

M υυυj)||Bs
p| r̂lj

merl

= −(2l − 1)η2gpe
2
�

2 r̂lj

16πε0mempc
2r4

l C1l

, (33)

Fs−s
pe,m = −∂V s−s

pe,m

∂rl

r̂ lj = |μs
ez|

∂|Bs
p|

∂rl

cos θj r̂ lj = −3η2gegpe
2�2 cos2 θj r̂lj

16πε0mempc
2r4

l C1l

. (34)

fc is the fraction of the e-charge sphere momentarily facing the narrowed Ep profile at rlj.

Eq (3a) for υυυe and again (16.1)′ for rl(
memp

M )υj are used in (32),(33). In (34), V s−s
pe,m =

−μμμs
e · Bs

p = −|μs
ez||Bs

p| cosθj is the magnetic potential of the spin-spin interaction; μs
ez is

an intensive quantity at re, hence not affected by the Bp profile narrowing, and is given by

Eq (20a). Fs−s
m0 = − ∫ 2π

0 eυυυs
e × Bs

pz(rl)dφs
e = 0;

∂|Bs
p|

∂rl
= −3Bs

p

rl
. f2

t projects the product

term υeυp contained in each component magnetic force to υ′
eυ

′
p which actually enters the

interaction; Fpe(rl, θj) ≡ Fpe(rl, θj, te, tp) is implicitly meant. υ′
eυ

′
p = (υeM/mp)(υpM/me) =

(M/M )υeυp = f2
t υeυp (Sec 2.1), so f2

t = M/M . A repulsion Frep
pe = Arepr̂lj/rN+1

l at short

range, relative to the magnetic interaction strength at the distance r ∼ 10−18 m, may generally
also present but is omitted for the intermediate range of interest here. Given the presumed
Sez, Spz, Jz-j = 1

2 , 1
2 ,−j configuration in units � here, all the three component magnetic forces

(for l > 0 for F orb−orb
pe,m , F s−orb

pe,m ) acted by p on e above are optimally in the −rlj direction and hence
attractive. Fpe is therefore in the −rlj direction and maximally attractive. Any alteration of the
relative orientations between Sez, Spz, Jz-j will render some or all of the component magnetic
forces repulsive. An alteration of Sez, Spz, Jz-j as a whole, i.e. from the configuration (i) to (ii)
of Eqs (21) or from Fig 2a to 2b for j = 1

2 , retains all component magnetic forces attractive,
and hence a total force Fpe the same as given in (32), or Fj same as given in (35) below.

Similarly, e produces at p at −rlj apart the electromagnetic fields Ee and Be, and forces

given as fceEe, f2
t Forb−orb

ep,m = −f2
t Forb−orb

pe,m , f2
t Fs−orb

ep,m = −f2
t Fs−orb

pe,m
ge

gp
, f2

t Fs−s
ep,m = −f2

t Fs−s
pe,m. The

action and reaction forces for the e, p in equilibrium must be equal in magnitude and opposite in
direction (Newton’s third law); the magnitude may be here represented by the geometric mean as

F =
√|Fpe||Fep| =

∑
λ,λ′

√
|Fλ

pe||Fλ′

ep| δλλ′, where λ, λ′ indicate the different component forces;

δλλ′ is the Kronecker delta. The last equation needs to hold for the action and reaction to
maintain detailed balance upon any small variation of the independent variables such as rlj.
The final total (attractive) force of p on e in equilibrium in the j = l − lTP , mj = −j state is

therefore, suffixing j after F explicitly, Fj(rl, θj) = −[fce
√|Ep||Ee|+f2

t

∑
λ

√
|Fλ

pe,m||Fλ
ep,m|]r̂ =

−fceEp + f2
t [Forb−orb

pe,m + Fs−orb
pe,m

√
gege

gp
+ Fs−s

pe,m]. Substituting Eqs (32)–(34) into the foregoing we

obtain this force in explicit and scalar form (and explicitly for lTP = 1
2 ),

Fj(rl, θj) = − e2

4πε0r
2
l

(fc + fm) � − e2fm

4πε0r
2
l

= − f2
t e2

�
2C− 0j

16πε0mempc
2r4

l

, (35)
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fm =
f2
t �

2C− 0j

4mempc
2r2

l

, C− 0j = (4l2 − 1) +
(2l − 1)η2√gegp

C1l

+
3gegpη

2 cos2 θj

C1l

. (36)

The negative sign in Eqs (35) indicates that Fj is attractive. The approximation is given
for fm >> fc = 1/γ2. For j = 1

2 (l = 1), using the solution values from Sec 6 gives
fm = �

2c2C− 0 1

2

/mempc
4r2

1m � 6.9 which indeed is >> fc = 1/γ2 � 5.7 × 10−11.

j = 0 yields J0 = 0, Borb
p = 0, and hence zero orbit-orbit and orbit-spin interactions. The

resultant system, even if possible to also form a bound state by the finite spin-spin interaction
only, is not a viable candidate of the neutron, at least because it does not contain a confined
antineutrino. For j ≥ 1

2 , the three component magnetic forces are each finite and attractive.

j = 1
2 therefore is the lowest possible (eigen) state of the e, p bound by an attractive magnetic

force at the separation scale ∼ 10−18 m (Sec 6), has a confined antineutrino, and has the correct
spin 1

2 (Sec 3). The j = 1
2 state is therefore a liable candidate for (the ground state of) the

neutron. For j = 1
2 (l = 1), hence cos θ 1

2

= 1/
√

3, and me = kmp = 1.3165mp (Sec 3), hence

f2
t =

(me+mp)2

memp
=

(k+1)2

k =̇4, Eq (35), the corresponding interaction potential V 1

2

and Hamiltonian

H 1

2

are written as, with Eqs (7.2a,b) for me, mp, and T 1

2

given in Sec 2.4,

F 1

2

(r1, θ 1

2

) = −3AoC− 0 1

2

γeγpr
4
1

, Ao =
e2�2

12πε0m0
em

0
pc

2
, C− 0 1

2

= 3 +
η2√gegp

C11
+

η2gegp

C11
; (37)

V 1

2

(r1, θ 1

2

) = −
∫ r1

∞
F 1

2

(r, θ 1

2

)dr =
r1F 1

2

(r1, θ 1

2

)

3
= −AoC− 0 1

2

γeγpr
3
1

= − e2�2C− 0 1

2

12πε0mempc
2r3

1

; (38)

T 1

2

= −Ck 1

2

V 1

2

, Ck 1

2

=
γ9πε0Mc2r1

(γ + 1)e2C− 0 1

2

; H 1

2

(r1, θ 1

2

) = T 1

2

+ V 1

2

= V 1

2

(1− Ck 1

2

). (39)

In terms of the e, p-neutron model, F 1

2

represents the weak interaction force, V 1

2

the
corresponding interaction potential, and H 1

2

Hamiltonian of neutron.

5. e, p disintegration. Neutron β decay
Suppose that an afore-described (free) neutron, being initially in stationary state of the
Hamiltonian H 1

2

at a time earlier, is now perturbed by an excitation or external-interaction

Hamiltonian HI = H0
I + H1

I = H1
I given in the CM frame; evidently H0

I = 0. So the bound e, p
are in the final (f) state disintegrated into free e, p separated at an effective infinite distance
r∞ such that V 1

2
f (r∞) = 0. The removal of the central force, say acted by p on e in the −r1 1

2

direction, subjects e to a deceleration along that direction and subsequently deceleration or
Bremsstrahlung radiation. Provided no exertion of external torque on the neutron, the angular
momentum must be conserved before (being a quantum Sν̄e = −1

2� in −z direction) and after
the deceleration radiation. The electromagnetic radiation emitted is therefore necessarily in the
form of a precessing-orbiting or simply rotational energy flux so as to convey the same angular
momentum quantum −1

2� in the z direction, and the same rotational kinetic energy Tν̄e = T 1

2

provided also no exchange of the kinetic energy with the surrounding. The rotational radiation
energy flux emitted resembles directly an antineutrino, ν̄e, which is now free. The equation of
the foregoing (disintegration) reaction straightforwardly is

n → p + e + ν̄e

i.e. the e, p disintegration resembles a neutron β decay. The final-state total Hamiltonian has
the general form H 1

2
f = V 1

2
f (r∞)+T 1

2
f = 0+T 1

2
f . The emitted particles would convey a certain

translational kinetic energy Ttr as converted from the total mass difference before (assuming the
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n being at rest) and after the neutron decay. Ttr is of a MeV scale (a scale as is also known from
β decay experiment) which is << T 1

2

of GeV scale. Omitting this Ttr, in the case of Tν̄e = T 1

2

,
we have T 1

2
f = T 1

2

+ Ttr � T 1

2

, and H 1

2
f = 0 + T 1

2
f � T 1

2

.

The energy condition for the neutron β decay to occur is HI = H 1

2
f −H 1

2

. Substituting in it
the equation for H 1

2
f above and (39c) for H 1

2

gives

HI = T 1

2

− (V 1

2

+ T 1

2

) = −V 1

2

=
AoC− 0 1

2

γeγpr
3
1

or (40)

GF = HI

(
4

3
πr3

1

)
=

AoC0 1

2

γeγp

=
e2�2C0 1

2

12πε0mempc
2

=
e2�2C0 1

2

48πε0M
2c2

, C0 1

2

=
4πC− 0 1

2

3
, (41)

where
(

4
3πr3

1

)
is the volume in which the electron is confined about the proton; the last of Eqs

(41a) is given after substituting the relation memp = MM = M ( (k+1)2

k M )=̇4M 2 given for

me = kmp = 1.3165mp. By virtue of its physical significance, the product term GF = HI(
4
3πr3

1)
in (41b) is directly identifiable with the CM-frame counterpart of the Fermi constant Glab

F .
Glab

F is experimentally determined (as Gexp
F ) from the neutron lifetime, denoted by τ lab here

as is usually measured in the lab frame, on the basis of the quantum theoretical relation
Glab

F ∝ 1/
√

τ lab. The neutron under consideration may be generally in motion, say at a
velocity ulab

cm in a fixed X direction. The (model) neutron mass in this direction is (cf Sec
2.3) mlab

n =̇M lab = γ lab
cm〈M〉 = γ lab

cmM 0, where γ lab
cm = (1 − (ulab

cm)2/c2)−1/2. Its component masses
are formally mlab

e = (γ lab
cm)κme, mlab

p = (γ lab
cm)κmp, i.e. each in effect augmented by a factor

(γ lab
cm)κ, where κ is a certain (positive) exponent resulting from the mapping of ulab

cm onto the
instantaneous interaction direction of e, p. So Eqs (41a), here re-written from its original form

as GF =
e2�2C0 1

2

12πε0mempc2
= A1

memp
, A1 =

e2�2C0 1

2

12πε0c2
, transformed to the lab frame is formally

Glab
F =

A1

mlab
e mlab

p

=
A1

(γ lab
cm)2κmemp

=
GF

(γ lab
cm)2κ

∝ 1

(γ lab
cm)2κ

√
τ 0

=
1√
τ lab

(42)

where τ 0 denotes the lifetime of a neutron at rest. (42) suggests that for a fast moving neutron
such that ulab

cm
2/c2 > 0 and γ lab

cm > 1 appreciably each, the neutron life time τ lab = (γ lab
cm)2κτ 0 will

appear appreciably ”dilated”, as the result of a reduced internal (magnetic) interaction strength,
or reduced Fermi constant. For a neutron at rest of major concern in this paper, GF identifies
with Glab

F as measured for a rest or slow-moving neutron. We shall continue to speak of GF .

Multiplying 137×12M 2
c2

�3cC0 1

2

on its both sides, rearranging, the last of Eqs (41a) is written as

GF (137× 12M 2/C0 1

2

)c2

�3c
=

137e2

4πε0�c
; or (43)

GFM2
efc

2

�3c
=

g2
neu

�c
, Mef =

(
137× 12M 2

C0 1

2

)1/2

=
40.546M√

C0 1

2

=̇
23.043mp√

C0 1

2

, g2
neu =

137e2

4πε0
; (44)

or GF = g2
neu(�c)2

M2
efc

4 . Mef is an effective mass; for the last of Eqs (44b) me = 1.3165mp is used.

e2

4πε0�c =
g2

H
�c = 1

137 = αH(= υ1H
c ) corresponds to the fine structure constant of the hydrogen

atom (and υ1H the orbiting velocity of electron relative to proton thereof). So the right side

of (43) is unity, 137×e2

4πε0�c = 1. The fine structure constant for the model neutron is accordingly

defined by αneu = υ 1

2

/c; using υ 1

2

=̇c from Sec 6 in it gives αneu=̇1. Based on its unity value,
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and on the physical significance of the dynamical variables, say
g2

neu
�c on its right side compared

to
g2

H
�c , Eq (44a) is immediately identifiable as the equation for αneu,

αneu =
υ 1

2

c
≡ 137αH(=̇1) =

g2
neu

�c
=

GFM2
efc

2

�3c
(45)

In the GWS theory, GF is given the formula GGWS
F =

g2
w

√
2(�c)2

M2
wc4

, where g2
w = e2

8ε0 sin2 θw
. Equating

GGWS
F with GF of (41a) gives a first-principles microscopic expression for Mw, accordingly Mz,

Mw =

(
3
√

2 πmemp

2C0 1

2

sin2 θw

)1/2

=

(
3
√

2 πk

2C0 1

2

sin2 θw

)1/2

mp; Mz = Mw/ cos θw (46)

It is well appreciated in the literature that, whilst the GF value is absolutely determined by the
lifetime of the neutron in question, the Mw value (or Mef in Eq 45) is dependent on the definition
or choice of the coupling constant g2

w (or g2
neu in Eq 45); g2

neu in (45) is uniquely specified for
υ 1

2

is separately known. In terms of the e, p-neutron model, Mw, or Mef , represents essentially
the (reduced) mass of the e, p particles in the binding and hence manifestly resistive potential
field V 1

2

. V 1

2

resembles the Higgs field. The Mw, or Mef , of a neutron is highly relativistically
augmented (Sec 6) over that of a hydrogen, primarily as the result of the relative velocity of e, p
within a neutron being so high as to approach c. Moreover, the e, p interaction in a neutron is
predominately magnetic, and in a hydrogen electrostatic.

6. Numerical evaluation
Equations (37)–(41) are specified effectively by four independent variables ā, r1, υ 1

2

, and
γ(υ 1

2

, c)(= γeγp/γM) (γM is given if γ is given), to be determined each. We need four independent
constraints for quantitatively determining these and subsequently the remaining dynamical
variables. Equation (1d) would ordinarily serve as one basic constraint: it describes a stable
state condition under which the central force F on mass M counterbalances with the inertial
(or here centrifugal) force M d2

r

dt2
. It may be checked (App Appendix B) that at a r1 value

satisfying Eq (1d), the lifetime of the e, p system however is not an optimum. This suggests that
the neutron candidate e, p system, if opted for a maximum lifetime, is not in stable state. We
shall choose the maximum lifetime condition here on the basis that a real free neutron indeed
is ”meta” stable only, with a relatively short lifetime 12 m.

In overall view of the basic solutions from preceding sections, the discussion just made above,
and the available key experimental data such as to realistically identify the neutron, we employ
(i) the quantisation condition (17a) for J 1

2

1, (ii) a maximum neutron lifetime, hence a minimum

GF , and (ii) the experimental value of the Fermi constant, G
exp
F , as three basic constraints. These

are (re-) written as, on dividing (17a) by r1M
0υ 1

2

for (i), and denoting by r1m the extremal
value of r1 at which GF is a minimum,

(i) : γ = γMγ† =

√
3(�c)c

2M 0c2r1υ 1

2

=
Doc

r1υ 1

2

, Do =

√
3�c

2M 0c2
(47)

(ii) : GF (r1m) = GF .min (48)

(iii) : GF (r1m) = Gexp
F = 1.43585(37)× 10−62 Jm3 (data from [1e]) (49)

1 The eigen value solution (17a) represents directly a Heisenberg relation for J 1

2

and the angular interval

2π, or alternatively in theory the Maupertuis-Jacobi’s action integral 2T 1

2

= Ck 1

2

H 1

2

/(Ck 1

2

− 1) and Δt 1

2

;

Δt 1

2

= 2πr1/υ 1

2

. The excitation Hamiltonian HI is not necessarily conjugated with the Δt 1

2

, but generally

with some other time interval subjecting to a Heisenberg relation depending on the excitation scheme.
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Since (47a) suggests that γ >> 1 for any υ 1

2

value not too far below c, and c = clab by the

standard assumption, so υ 1

2

= c
√

γ2 − 1/γ � c = clab, which serves as the fourth constraint here.

With this υ 1

2

value in (47a), we obtain (50a,b) below; further with (8.1b) for γeγp(= γMγ = γ2
Mγ†)

and the resultant γM from (50b) in (41a), with γ† = 450.96 given in Sec 2.2 (for me = 1.3165mp),
we obtain (51) below,

γ =
Do

r1
, γM =

γ

γ†
=

Do

γ†r1
, (50)

GF =
AoC0 1

2

γ2

Mγ†
=

γ†AoC0 1

2

r2
1

D2
o

=
450.96AoC0 1

2

r2
1

D2
o

. (51)

Do(= 3.3462× 10−13 m) and Ao(= 6.2455× 10−57 Jm3) are constants. For evaluating C0 1

2

(Eqs

41b, 37c), we shall use the experimental g values of e, p, ge = 2, gp = 5.5857, and η = 1/
√

2
(Appendix A). GF of (51) is then solely dependent on r1,ā. Characteristically, for a specified
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Figure 3. (a) GF = HIr
3
1, C0 1

2

, Mw (curves 1,2,3), and (b) γ, V 1

2

= −HI , T 1

2

(curves 4,5,6) as

functions of r1 computed from Eqs (51), (37c), (46), (50a), (38), (39a) for ā = 1.5391(8)×10−18

m. At r1 = r1m = 2.5369(5)× 10−18 m, GF = Gexp
F = 1.43585(37)× 10−62 Jm3.

ā value, the GF (r1) vs r1 function presents an extremal point at a (uniquely specified) r1,
r1m, at which GF (r1m) is a minimum satisfying Eq (48), as in Fig 3a, although this is not
generally equal to Gexp

F . GF (r1m) increases monotonically with ā. Computing GF (r1m) as a
function of ā over a range of ā values, a unique ā is found at ā = 1.5391(8)× 10−18 m at which
GF (r1m) = Gexp

F satisfying Eq (49), r1m = 2.5369(5)× 10−18 m, γ = 1.3190× 105 (Eq 50a), and
C0 1

2

=
(

4π
3

) × 3(1 + 1.3952 + 4.6633) = 88.69 (Eqs 41b, 37c). Note that the ā value obtained

is in accordance with the order of magnitude of the neutron charge radius, ∼ 1.4 × 10−18 m,
measured by electron-neutron scattering experiment (see also Sec 2.3).

With the ā, r1m (hence C0 1

2

), υ 1

2

, γ values obtained, all the remaining dynamical variables

and functions may be evaluated. For the fixed ā = 1.5392 × 10−18 m value, the GF , C0 1

2

, Mw

(using the average experimental value sin2 θw = 0.23), γ, V 1

2

(= −H 1

2

), and T 1

2

vs. r1 functions,
computed from Eqs (51), (41b,37c), (46a), (47a), (38), (39a) are as shown in Figs 3a,b (curves
1–6). r1 = r1.min lies as expected in the region where −∂V 1

2

(r)/∂r = F 1

2

(r) < 0, and V 1

2

(r) < 0.

At r1 = r1m, V 1

2

= −HI = −1.310 GeV, T 1

2

(� M c2) = 67.36 GeV, H 1

2

(� Etot. 1
2

) = 66.05

GeV, Mw = 77.23 GeV. Furthermore specifically, with the γ value in (50b),(9a),(b), we obtain

γM = 292.48(3), γe = γM

(M0+K)
2m0

e
= 3.0537(6)× 105, and γp = γM

(M0−K)
2m0

p
= 126.33, which are

>> 1 each. So the particles e, p within the neutron are travelling at velocities υ′
e, υ

′
p � c measured
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in their local space and time coordinates re, te, rp, tp (Eqs 5) in the (non-inertial) CM frame; and
so is the total mass M at the CM relative to e, p. The total kinetic energy of e, p in these absolute
terms is given by substituting the υ′

e, υ
′
p, me(= kmp), mp values in (12.2) as T ′

e+T ′
p=̇(k+1)mpc

2 =

2.3165γpm
0
pc

2 = 2.3165×118.53 = 2×137.29 GeV. Substituting me = kmp into Eqs (3a,b) gives

the e, p velocities measured in time t, υe =
mp

M υ = c
k+1 = 0.43c, υp = −me

M υ = − kc
k+1 = −0.57c;

and in turn the above values into Eq (11.2) gives the corresponding total kinetic energy
Te + Tp = kmp(

c
k+1 )2 + mp(

kc
k+1 )2 = k

k+1mpc
2 = 0.56831 × 118.53 = 67.36 GeV, equal to

the solution value for T 1

2

= M c2 earlier. The non-inertial frame motion contributes an amount

(T ′
e + T ′

p) − (Te + Tp) = (k + 1)mpc
2 − k

k+1mpc
2 = k2+k+1

k+1 mpc
2 = 1.75mpc

2. The exceedingly
large kinetic energy apparently is mainly consumed to contract the size of the system.

The author expresses thanks to emeritus scientist P-I Johansson for his private financial
support of the author’s research, to Kissemiss Johansson for his joyful companion when the
unification researches were carried out, and to Professor C Burdik for providing the opportunity
of presenting this wok at the 23rd International Conference on Integrable Systems and Quantum
Symmetries (ISQS23), Tech Univ, Prague, June 2015, during which the author also very much
enjoyed interesting discussions with a number of participants.

Appendix A. Mapping of the spin current loop on to reduced geometries
Consider here the circular spin current loop of proton as projected in the xs

py
s
p plane, spinning

at tangential velocity υs
pxy

about the zs
p axis passing through rp in counterclockwise sense, i.e.

in spin up state as in Sec 3.1. dqp = ρpxyapdφs
p is a charge element at ξξξp(φ

s
p) on it. The

magnetic field produced by this spin current loop at a distance r from rp has the general form

(Biot-Savart law) Bs
p(r) =

∫
dBs

pθ(r
′) =

∫ dqpυυυs
pxy

×r
′

4πε0c2r′3 , where r′ = r + ξξξp(φ
s
p). The integration in

algebraic terms is a complex problem. We below reduce the current loop to simpler geometries
to facilitate an effective algebraic expression for the field (Eq 30, Sec 4).

Consider first this field produced at a point at distance xs
p = |r| from rp on the positive xs

p

axis, Bs
p(x

s
p = |r|); xs

p is on the right side to the zs
p axis as plotted for the parallel x, y, z axes

of xs
p, y

s
p, z

s
p in Fig 1b. The problem has the obvious symmetry that the left-half current loop

produces at xs
p a magnetic field Bs

pL(∝ υυυs
pxy × xs

p) > 0 in +z direction, and the right-half a
field Bs

pR < 0 in −z direction. The total field Bs
pR − Bs

pL = Bs
p(x

s
p = |r|) is in −z direction.

Furthermore, on either half loop the differential dBs
p fields produced by all charge elements as

associated with the y-component velocities add up, and with the x-component velocities cancel
out. So, in so far as the same Bs

pL, Bs
pR are in effect produced, the left- and right- half spin

current loops may be further reduced to two point half-charges +1
2e, +1

2e located at effective
distances −ā, ā from rp on the xs

p axis and moving oppositely at velocities −ῡs
pxy, ῡ

s
pxy in the

−ys
p, +ys

p directions, where

ā = ηa, ῡs
pxy = ῡs

p cos θs
p, ῡs

p = āωs
p = ηaωs

p = ηυs
p, υs

p = aωs
p; (A.1)

η is a coefficient to be determined. We have set a = ap = ae = 1
2 (ae + ap) here; so ā is effective

also in its being scaled by η from the average radius a of the e, p charges. In analogy to r = r0/γ,
a is contracted2 from its rest value a0 formally according to a = a0/γa; γa is a factor analogous
to γ, being an increasing function with (υp/c)2.

2 Contractions in charge radius and in the wavelength of matter wave may be comprehended on a common
physical ground as follows. Charges and matter waves are distributed energy entities in space each. Two charges
or two matter waves by this nature will inevitably repel with one another when attempting to occupy same space.
Higher velocities facilitate two charges or two matter waves to counterbalance such repulsion to a larger extent,
manifesting consequently as the contraction in their dimensions.
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By virtue of its physical significance, ā should be such that the moments of inertia of the
right and left point half-charges about the zs

p axis, Ipoint
R , Ipoint

L (= Ipoint
R ), are equal to those of

the half current loops about zs
p, I loop

R , I loop
L (= I loop

R ). Let m∗
p be the effective mass uniformly

distributed along the full current and in turn on the full charge, and hence a mass 1
2m∗

p on each
half loop and in turn at each half point charge. The moments of inertia of one point half charge
and one half loop are known as, written for the right ones,

Ipoint
R =

1

2
m∗

pā
2, I loop

R =

∫ π

0

x2dm∗
p = 2

∫ π/2

0

(ap cosφ)2
(m∗

p/2)

π
dφ =

m∗
pa

2

4
(A.2)

The equality I loop
R = Ipoint

R gives 1
2 ā2(= 1

2 (ηa)2) = 1
4a2, so η = 1/

√
2. Accordingly, the right

point half-charge is associated with a spin angular momentum SpR = Ipoint
R ωs

p(= I loop
R ωs

p) =
1
2m∗

pā
2ωs

p = 1
2m∗

pāῡs
p, so that the z component is SpRz = SpR cos θs

p = 1
2m∗

pāῡs
pxy

.

Now with respect to a point at a distance xs
p
′′ from rp on the x′′ axis (Sec 2.4) lying in a plane

whose normal is along the z′ or z′′ direction at angle θj to the z axis, with |xs
p
′′| = |xs

p| = |r|,
the component spin angular momentum of the right point half-charge perpendicular to x′′ is the
projection of SpRz onto the z′′ or z′ direction,

S ′′
pRz = SpRz cos θj =

1

2
m∗

pāῡs
pxy

cos θj =
1

2
m∗

pāῡs
p
′′, ῡs

p
′′ = ῡs

pxy
cos θj = ῡs

p cos θs
p cos θj (A.3)

Appendix B. Stable-state solution for rl

Substituting
d2

rlj

dt2
= −υ2

j

rl
r̂lj , υj from (16.1)′, and Fj from (35) into (1d) gives −M (4l2−1)�2 r̂

4M 2
r3
l

=

− f2
t e2

�
2C− 0j r̂

16πε0mempc2r4
l
. Cancelling common factors on both sides, sorting, with f2

t = 4 for me =

1.3165mp (Sec 4) and M = γ
(j)
M M 0 for jth state, we obtain

rl =
e2C− 0j

(4l2 − 1)πε0γ
(j)
M M 0c2

. For j =
1

2
, l = 1 : r1 =

e2C− 0 1

2

3πε0γ
( 1

2
)

M M 0c2
; (B.1)

for j = 3
2 , l = 2, r2 =

e2C−
0 3
2

15πε0γ
(3/2)
M M0c2

, C− 0 3
2

= 15 +
3
√

gegp

2C12
+

9gegp

10C12
given after Eq (36b). For the

j = 1
2 state, with (37b) for C− 0 1

2

, (30c) for C11, and ā = 1.53918×10−18 m, the right side of (B.1b)

may be computed as a function of r1. Two numerical solutions are found at r1 = 1.440× 10−18,
1.661(7)× 10−18 m, at which the two sides of (B.1b) are equal.
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