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Abstract. A class of semi-discrete chains of the form ¢, = f(xz,t,t1,¢s) is considered. For
the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are
obtained.

1. Introduction
In the present paper we consider the integrable differential-difference chains of hyperbolic type

tlx = f(matvtlatx)a (1)

where the function ¢(n, z) depends on discrete variable n and continuous variable z. We use the
following notations t, = a%t and t; = t(n + 1,z). It is also convenient to denote t; = ;—;t,
k € N and t,, = t(n +m,x), m € Z.

The integrability of the chain (1) is understood as Darboux integrability that is existence of
so called z- and n-integrals [1, 4]. Let us give the necessary definitions.

Definition 1 Function F(x,t,t1,...,tx) is called an x-integral of the equation (1) if
DyF(z,t,t1, ... tx) =0

for all solutions of (1). The operator D, is the total derivative with respect to x.

Definition 2 Function G(x,t,ty, ..., ty)) is called an n-integral of the equation (1) if
DG(CE, t, tx, e ,t[m}) = G(JI, t, tx, ce ,t[m])

for all solutions of (1). The operator D is a shift operator.

To show the existence of z- and n-integrals we can use the notion of characteristic ring. The
notion of characteristic ring was introduced by Shabat to study hyperbolic systems of exponential
type (see [11]). This approach turns out to be very convenient to study and classify the integrable
equations of hyperbolic type (see [12] and references there in).

For difference and differential-difference chains the notion of characteristic ring was developed
by Habibullin (see [3]-[8]). In particular, in [4] the following theorem was proved
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Theorem 3 (see [4/). A chain (1) admits a non-trivial x-integral if and only if its characteristic
z-ring is of finite dimension.

A chain (1) admits a non-trivial n-integral if and only if its characteristic n-ring is of finite
dimension.

For known examples of integrable chains the dimension of the characteristic ring is small. The
differential-difference chains with three dimensional characteristic z-ring were considered in [6].
We consider chains with four dimensional characteristic z-ring, such chains admit z-integral
of minimal order four. That is we obtain necessary and sufficient conditions for a chain to
have a four dimensional characteristic x-ring. This conditions can be easily checked by direct
calculations.

Note that if a chain (1) admits a nontrivial z-integral F(z,t,t1,...t;) and a non trivial
n-integral G(x,t,ts,. .. ,t[m]) its solutions satisfy two ordinary equations

F(x,t, ty,...,tx) = a(n),

G(z,t,tes .. tp) = b(T)

for some functions a(n) and b(z). This allows to solve (1) (see [9]).

The paper is organized as follows. In Section 2 we derive necessary and sufficient conditions
on function f(x,t,t1,t;) so that the chain (1) has four dimensional characteristic ring and in
Section 3 we consider some applications of the derived conditions.

2. Chains admitting four dimensional z-algebra.
Suppose F is an z-integral of the chain (1) then its positive shifts and negative shifts D* F,
k € 7Z, are also z-integrals. So, looking for an z-integral it is convenient to assume that it
depends on positive and negative shits of ¢.

To express z derivatives of negative shifts we can apply D~! to the chain (1) and obtain

ly = f(.’E, t-1,t, tx)-
Solving the above equation for t_1, we get
t—lx = g(xa t—lv t) t:c)

Let F(x,t,t1,t_1,...) be an z-integral of the chain (1). Then on solutions of (1) we have

DF—aj+ta£+t a£+t 8i+t 8£_|_t ai+ —O
o ot T ot T ot, T oty M oty -
o OF aF OF  OF OF
D,F = — +D +D tg—— .
ox + f 875, fatz 875 2 + =0
Define a vector field
0 0 0 0 0
K=—4t,— —_— D D! 2
or o T e Tt f8t2+ 9ot 5 T 2)
then
D,F=KF

Note that F' does not depend on t, but the coefficients of K do depend on t,. So we introduce
a vector field 5

X=gn (3)
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The vector fields K and X generate the characteristic z-ring L,.
Let us introduce some other vector fields from L.

Ci=[X,K] and C,=[X,Ch1] n=2,3,... 4)
and
le[K,Cl] and Zn:[K,Zn_l] n:2,3,... (5)
Thus
0 0 0
Ci = — — — ...
1= gy toeg t
Coy = — e
2 = ftots a1, + Gtota ET +
0 0
21 = (ftaw +taftat + ffrats — ft — froft1) o + (Gtaw +t2Gtot + 9Gtuty — Gt — G, 9t1) ET +...
and so on.

It is easy to see that if f; ; # 0 then the vector fields X, K, C; and Cy are linearly
independent and must form a basis of L, provided dimL, = 4. By Lemma 3.6 in [6], if f,+, =0
and (fi,, + tafeot + ffroty, — ft — fio ftu) = 0 then dimL, = 3. So in the case f;,;, = 0 we may
assume (fy,, + tofrot + ffioty — ft — fr. ft;) # 0. Then the vector fields X, K, C and Z; are
linearly independent and must form a basis of L, provided dimL, = 4. We consider this two
cases separately.

In the rest of the paper we assume that the characteristic ring L, is four dimensional.

Remark 4 It is convenient to check equalities between vector fields using the automorphism
D()D~Y. Direct calculations show that

DXD7 ' = iX,
fu
DKD_l - K _ fm +tacf].ct+fft1X_
ta

The images of other wvector fields under this automorphism can be obtained by commuting
DXD™! and DKD™!.

2.1. f(x,t,t1,ty) is non linear with respect to t,.
Let f(z,t,t1,t;) be non linear with respect to tz, f.1, # 0. Then the vector fields X, K, C;
and Cy form a basis of L,. For the algebra L, to be spanned by X, K, C; and (5 it is enough
that C'5 and Z7 are linear combinations of X, K, C; and Cs. From the form of the vector fields
it follows that we must have

03 = )\CQ and Zl = /,LCQ

for some functions p and A\. The conditions for the above equalities to hold are given by the
following theorem.

Theorem 5 The chain (1) with fi 1, # 0 has characteristic ring L, of dimension four if and
only if the following conditions hold

D <ftztztm> — ftxt:ctxftx - 3ft21tz ) (6)
Jtats frota f2,
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<f:ctz + toftot + ot — St — ftzftl) _
Jtota

Jate ttefiot + [ oty — ft — frofta
Jta
ftots

The characteristic ring is generated by the vector fields X, K, Cq, Cs.

(fx +txft + ft1)'

Proof. By Remark 4 we have

ft t ft t ft
DCyD™! —C z ”C + ==X
12 i It
_ 3 ftats Statots fta — 324 Statots fta — 324
ftz i 7 ' 78
+Dp ft
DZ, D7 = Z-—(mﬁi><c —X>
' fr. 2 fr.
 fettafe+ ffy  —(fate Ftefigt + [ frot) + fo + feofra
where p = and m = 7 .
ty te
The equality C3 = ACy implies that
DC3D~' = (D)) DCy D™, (8)

Substituting expressions for DCy D! and DC3D~! into (8) and comparing coefficients of C1,
(5 and X we obtain that A satisfies

3fi.
A= (D) + 22t
I
ft tat ft 3ft2t
N

We can find A and DA independently and condition that DA is a shift of A leads to (6).
The equality Z; = pCsy implies that

DZyD™' = (Du) DCyD L. (9)

Substituting expressions for DCy D! and DC3D~! into (9) and comparing coefficients of C1,
C5 and X we obtain that p satisfies

_ fx+tmft+fft1 _ (D:u>

fta fta
and . D
—(fate Ftafiot + [fratn — fo — Jroftr) + fo ¥ x;:t + ftate = —ftzt}t(m

We can find p and Dy independently and condition that Dy is a shift of p leads to (7). O

Remark 6 Let dim L, = 4 and f;,, # 0. Then the characteristic ring L, have the following
multiplication table
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X K O G

X 0 C Co pCy
K —Cl 0 )\02 pCQ
i1 —Cy —XC 0 7702

Co | —uCy  —pCy  —nCy 0
where p = A+ X () and n = X(p) — K(p).
Example 7 Consider the following chain

tty — /12 — M2(ty + 1)
1

tiy =

introduced by Habibullin and Zheltukhina [10]. We can easily check that the function

ty — /12 — M2(t1 + )
tq

f(tvtlvtﬂﬁ) =

satisfies the conditions of Theorem 5. Hence the corresponding x-algebra is four dimensional.
The chain has the following x-integral

(B -2 - 18)

F=
G

2.2. f(x,t,t1,ty) is linear with respect to t,.

Let f(x,t,tl, «) be linear with respect to t,, fi,;, = 0. Then vector fields X, K, C; and Z;
form a basis of L. The condition f;,;, = 0 also implies that the vector field Cy = 0, see [6]. For
the algebra L, to be spanned by X, K, C1 and Z it is enough that Zs is a linear combination
of X, K, C7 and Z;. From the form of the vector fields it follows that we must have

ZQ = a21

for some function a. The conditions for the above equality to hold given by the following
theorem.

Theorem 8 The chain (1) with fi,;, = 0 has the characteristic ring L, of dimension four if
and only if the following condition hold

m fta

+m — ftl' (10)

—(fut, +tafiot + [ rots) + fr + fr. frr
Tt '

where m =

vector fields X, K,C1, Z;.

The characteristic ring s generated by the

Proof. By Remark 4 we have

— . T
pant = o () (0 %)
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The equality Zo = aZ; implies that
DZyD™' = (Da) DZ, D7 L. (11)

Substituting expressions for DZ;D~! and DZ>D~! into (11) and comparing coefficients of C1,
Z1 and X we obtain that a and D(«) satisfy

K<1)+m+a_D<a>

foo)  fu Jo Ju
m mf;  mD(a)
K (ft,) 2

We can find @ and D(«) independently and condition that D(«) is a shift of a leads to (10). O

Remark 9 Let dim L, = 4 and f;,, = 0. Then the characteristic ring L, have the following
multiplication table

| X K ¢y Z
X 0 Ch 0 0
K —Cl 0 Zl OéZl
C1 0 -z 0 X(a)Z)
Z1 0 —OéZl —X(Oé)Zl 0

Example 10 Consider the following chain

t+t1

tie =ts +€ 2

introduced by Dodd and Bullough [2]. We can easily check that the function

t+tq

fltti,ty) =ty +e 2

satisfies the conditions of Theorem 8. Hence the corresponding x-algebra is four dimensional.
The chain has the following x-integral

3. Applications
The conditions derived in the previous section can be used to determine some restrictions on
the form of the function f(x,t,t1,t;) in (1).

Lemma 11 Let the chain (1) have four dimensional characteristic x-ring. Then
f=M(z,t, t)A(x, t,t1) + t.B(x,t,t1) + C(z,t,t1), (12)
where M, A, B and C are some functions.
Proof. Let fi ¢, # 0 (if fi,+, = 0 then f obviously has the above form). Since characteristic

x-ring has dimension four the condition (6) holds. It is easy to see that (6) implies that Jistots

tote
does not depend on t;. Hence

X(In|ft,e,]) = My(x,t,t;) and  In|fyqe,| = Ma(z,t,t.) + A1(z,t,t1).

The last equality implies (12). O
We can also put some restrictions on the shifts of the function f(x,t,t1,t;) in (1).
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Lemma 12 Let the chain (1) have four dimensional characteristic x-ring and fi,i, # 0. Then
Df = —Hi(z,t,t1,t2)ts + Ha(z,t, 11, 12) f + Hs(x, 1, 11, t2), (13)

where Hy, Hy and Hs are some functions.

Proof. Note that the shift operator D and the vector field X satisfy

1
DX = —XD. (14)
ft.

The condition (6) can be written as

DX(In|for,|) = J;Xan fo | — [/ [?)

Using (14) we get
1 1
XD foor ) = =X (e, | - In|f,[%)

ty x

which implies that

D D
X (m g3 Dltate > =0 or X (ff fwﬂf) = 0.
* Jtaota * ftota
Thus Dfi ¢, = Hl(x,t,tl,tg)f}z;z. Since Df;,1, = DX(f:,) and ftf“f% = —f%X(f%) we can
te te e ’
rewrite previous equality using (14) as
1
X <thx + H1(907t7751,t2)f> =0
te
which implies
1
thz = _Hl(xata tl’t2)T + HQ(Z’,t,tl,tQ).

Writing
fio

1
DX(f) = —Hi(x,t, t1,t2) — +H2($,t,t1,t2)ft

fta
and applying (14) as before we get

X(Df + Hl(CE, t,tl, tg)tz — HQ(CE, t,tl, tg)f) =0.

The last equality gives (13). O
Note that the equality (13) can be written as

togw = Ho(x, t,t1,t2)t1, — Hi(x,t,t1,t2)ty + Ha(x, t,t1,t2).
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