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Abstract. A class of semi-discrete chains of the form t1x = f(x, t, t1, tx) is considered. For
the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are
obtained.

1. Introduction
In the present paper we consider the integrable differential-difference chains of hyperbolic type

t1x = f(x, t, t1, tx), (1)

where the function t(n, x) depends on discrete variable n and continuous variable x. We use the

following notations tx = ∂
∂x t and t1 = t(n + 1, x). It is also convenient to denote t[k] =

∂k

∂xk t,
k ∈ N and tm = t(n+m,x), m ∈ Z.

The integrability of the chain (1) is understood as Darboux integrability that is existence of
so called x- and n-integrals [1, 4]. Let us give the necessary definitions.

Definition 1 Function F (x, t, t1, . . . , tk) is called an x-integral of the equation (1) if

DxF (x, t, t1, . . . , tk) = 0

for all solutions of (1). The operator Dx is the total derivative with respect to x.

Definition 2 Function G(x, t, tx, . . . , t[m]) is called an n-integral of the equation (1) if

DG(x, t, tx, . . . , t[m]) = G(x, t, tx, . . . , t[m])

for all solutions of (1). The operator D is a shift operator.

To show the existence of x- and n-integrals we can use the notion of characteristic ring. The
notion of characteristic ring was introduced by Shabat to study hyperbolic systems of exponential
type (see [11]). This approach turns out to be very convenient to study and classify the integrable
equations of hyperbolic type (see [12] and references there in).

For difference and differential-difference chains the notion of characteristic ring was developed
by Habibullin (see [3]-[8]). In particular, in [4] the following theorem was proved
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Theorem 3 (see [4]). A chain (1) admits a non-trivial x-integral if and only if its characteristic
x-ring is of finite dimension.
A chain (1) admits a non-trivial n-integral if and only if its characteristic n-ring is of finite
dimension.

For known examples of integrable chains the dimension of the characteristic ring is small. The
differential-difference chains with three dimensional characteristic x-ring were considered in [6].
We consider chains with four dimensional characteristic x-ring, such chains admit x-integral
of minimal order four. That is we obtain necessary and sufficient conditions for a chain to
have a four dimensional characteristic x-ring. This conditions can be easily checked by direct
calculations.

Note that if a chain (1) admits a nontrivial x-integral F (x, t, t1, . . . tk) and a non trivial
n-integral G(x, t, tx, . . . , t[m]) its solutions satisfy two ordinary equations

F (x, t, t1, . . . , tk) = a(n),

G(x, t, tx, . . . , t[m]) = b(x)

for some functions a(n) and b(x). This allows to solve (1) (see [9]).
The paper is organized as follows. In Section 2 we derive necessary and sufficient conditions

on function f(x, t, t1, tx) so that the chain (1) has four dimensional characteristic ring and in
Section 3 we consider some applications of the derived conditions.

2. Chains admitting four dimensional x-algebra.
Suppose F is an x-integral of the chain (1) then its positive shifts and negative shifts Dk F ,
k ∈ Z, are also x-integrals. So, looking for an x-integral it is convenient to assume that it
depends on positive and negative shits of t.

To express x derivatives of negative shifts we can apply D−1 to the chain (1) and obtain

tx = f(x, t−1, t, tx).

Solving the above equation for t−1x we get

t−1x = g(x, t−1, t, tx).

Let F (x, t, t1, t−1, . . . ) be an x-integral of the chain (1). Then on solutions of (1) we have

DxF =
∂F

∂x
+ tx

∂F

∂t
+ t1x

∂F

∂t1
+ t−1x

∂F

∂t−1
+ t2x

∂F

∂t2
+ t−2x

∂F

∂t−2
+ · · · = 0

or

DxF =
∂F

∂x
+ tx

∂F

∂t
+ f

∂F

∂t1
+ g

∂F

∂t−1
+Df

∂F

∂t2
+D−1g

∂F

∂t−2
+ · · · = 0.

Define a vector field

K =
∂

∂x
+ tx

∂

∂t
+ f

∂

∂t1
+ g

∂

∂t−1
+Df

∂

∂t2
+D−1g

∂

∂t−2
+ . . . , (2)

then
DxF = K F.

Note that F does not depend on tx but the coefficients of K do depend on tx. So we introduce
a vector field

X =
∂

∂tx
(3)
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The vector fields K and X generate the characteristic x-ring Lx.
Let us introduce some other vector fields from Lx.

C1 = [X,K] and Cn = [X,Cn−1] n = 2, 3, . . . (4)

and
Z1 = [K,C1] and Zn = [K,Zn−1] n = 2, 3, . . . (5)

Thus

C1 =
∂

∂t
+ ftx

∂

∂t1
+ gtx

∂

∂t−1
+ . . .

C2 = ftxtx
∂

∂t1
+ gtxtx

∂

∂t−1
+ . . .

Z1 = (ftxx + txftxt + fftxt1 − ft − ftxft1)
∂

∂t1
+ (gtxx + txgtxt + ggtxt1 − gt − gtxgt1)

∂

∂t−1
+ . . .

and so on.
It is easy to see that if ftxtx ̸= 0 then the vector fields X, K, C1 and C2 are linearly

independent and must form a basis of Lx provided dimLx = 4. By Lemma 3.6 in [6], if ftxtx = 0
and (ftxx + txftxt + fftxt1 − ft − ftxft1) = 0 then dimLx = 3. So in the case ftxtx = 0 we may
assume (ftxx + txftxt + fftxt1 − ft − ftxft1) ̸= 0. Then the vector fields X, K, C1 and Z1 are
linearly independent and must form a basis of Lx provided dimLx = 4. We consider this two
cases separately.

In the rest of the paper we assume that the characteristic ring Lx is four dimensional.

Remark 4 It is convenient to check equalities between vector fields using the automorphism
D( )D−1. Direct calculations show that

DXD−1 =
1

fx
X,

DKD−1 = K − fx + txft + fft1
ftx

X.

The images of other vector fields under this automorphism can be obtained by commuting
DXD−1 and DKD−1.

2.1. f(x, t, t1, tx) is non linear with respect to tx.
Let f(x, t, t1, tx) be non linear with respect to tx, ftxtx ̸= 0. Then the vector fields X, K, C1

and C2 form a basis of Lx. For the algebra Lx to be spanned by X, K, C1 and C2 it is enough
that C3 and Z1 are linear combinations of X, K, C1 and C2. From the form of the vector fields
it follows that we must have

C3 = λC2 and Z1 = µC2

for some functions µ and λ. The conditions for the above equalities to hold are given by the
following theorem.

Theorem 5 The chain (1) with ftxtx ̸= 0 has characteristic ring Lx of dimension four if and
only if the following conditions hold

D

(
ftxtxtx
ftxtx

)
=

ftxtxtxftx − 3f2
txtx

ftxtxf
2
tx

. (6)
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D

(
fxtx + txftxt + fftxt1 − ft − ftxft1

ftxtx

)
=

fxtx + txftxt + fftxt1 − ft − ftxft1
ftxtx

ftx − (fx + txft + ft1).

(7)

The characteristic ring is generated by the vector fields X,K,C1, C2.

Proof. By Remark 4 we have

DC2D
−1 =

1

f2
tx

C2 −
ftxtx
f3
tx

C1 +
ftxtxft
f4
tx

X

DC3D
−1 =

1

f3
tx

C2 −
3ftxtx
f4
tx

C2 −
ftxtxtxftx − 3f2

txtx

f5
tx

C1 + ft
ftxtxtxftx − 3f2

txtx

f6
tx

X

DZ1D
−1 =

1

ftx
Z1 −

(
mftx + p

f2
tx

)(
C1 −

ft
ftx

X

)
,

where p =
fx + txft + fft1

ftx
and m =

−(fxtx + txftxt + fftxt1) + ft + ftxft1
ftx

.

The equality C3 = λC2 implies that

DC3D
−1 = (Dλ)DC2D

−1. (8)

Substituting expressions for DC2D
−1 and DC3D

−1 into (8) and comparing coefficients of C1,
C2 and X we obtain that λ satisfies

λ = ftx(Dλ) +
3ftxtx
ftx

(Dλ) =
ftxtxtxftx − 3f2

txtx

ftxtxf
2
tx

.

We can find λ and Dλ independently and condition that Dλ is a shift of λ leads to (6).
The equality Z1 = µC2 implies that

DZ1D
−1 = (Dµ)DC2D

−1. (9)

Substituting expressions for DC2D
−1 and DC3D

−1 into (9) and comparing coefficients of C1,
C2 and X we obtain that µ satisfies

µ− fx + txft + fft1
ftx

=
(Dµ)

ftx

and

−(fxtx + txftxt + fftxt1 − ft − ftxft1) +
fx + txft + fft1

ftx
ftxtx = −ftxtx(Dµ)

ftx

We can find µ and Dµ independently and condition that Dµ is a shift of µ leads to (7). �

Remark 6 Let dimLx = 4 and ftxx ̸= 0. Then the characteristic ring Lx have the following
multiplication table
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X K C1 C2

X 0 C1 C2 µC2

K −C1 0 λC2 ρC2

C11 −C2 −λC2 0 ηC2

C2 −µC2 −ρC2 −ηC2 0

where ρ = λµ+X(λ) and η = X(ρ)−K(µ).

Example 7 Consider the following chain

t1x =
ttx −

√
t2x −M2(t1 + t)

t1

introduced by Habibullin and Zheltukhina [10]. We can easily check that the function

f(t, t1, tx) =
ttx −

√
t2x −M2(t1 + t)

t1

satisfies the conditions of Theorem 5. Hence the corresponding x-algebra is four dimensional.
The chain has the following x-integral

F =
(t21 − t2)(t21 − t22)

t21
.

2.2. f(x, t, t1, tx) is linear with respect to tx.
Let f(x, t, t1, tx) be linear with respect to tx, ftxtx = 0. Then vector fields X, K, C1 and Z1

form a basis of Lx. The condition ftxtx = 0 also implies that the vector field C2 = 0, see [6]. For
the algebra Lx to be spanned by X, K, C1 and Z it is enough that Z2 is a linear combination
of X, K, C1 and Z1. From the form of the vector fields it follows that we must have

Z2 = αZ1

for some function α. The conditions for the above equality to hold given by the following
theorem.

Theorem 8 The chain (1) with ftxtx = 0 has the characteristic ring Lx of dimension four if
and only if the following condition hold

D

(
K(m)

m
−m+

ft
ftx

)
=

K(m)

m
+m− ft1 . (10)

where m =
−(fxtx + txftxt + fftxt1) + ft + ftxft1

ftx
. The characteristic ring is generated by the

vector fields X,K,C1, Z1.

Proof. By Remark 4 we have

DZ1D
−1 =

1

ftx
Z1 −

(
mftx + p

f2
tx

)(
C1 −

ft
ftx

X

)
,

and

DZ2D
−1 =

(
K

(
1

ftx

)
+

α+m

ftx

)
Z1 +

(
K

(
m

ftx

)
+

mft
f2
tx

− pX

(
m

ftx

))(
C1 −

ft
ftx

X

)

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012055 doi:10.1088/1742-6596/670/1/012055

5



The equality Z2 = αZ1 implies that

DZ2D
−1 = (Dα)DZ1D

−1. (11)

Substituting expressions for DZ1D
−1 and DZ2D

−1 into (11) and comparing coefficients of C1,
Z1 and X we obtain that α and D(α) satisfy

K

(
1

ftx

)
+

m

ftx
+

α

ftx
=

D(α)

ftx

K

(
m

ftx

)
+

mft
f2
tx

=
mD(α)

ftx

We can find α and D(α) independently and condition that D(α) is a shift of α leads to (10). �

Remark 9 Let dimLx = 4 and ftxx = 0. Then the characteristic ring Lx have the following
multiplication table

X K C1 Z1

X 0 C1 0 0
K −C1 0 Z1 αZ1

C1 0 −Z1 0 X(α)Z1

Z1 0 −αZ1 −X(α)Z1 0

Example 10 Consider the following chain

t1x = tx + e
t+t1
2

introduced by Dodd and Bullough [2]. We can easily check that the function

f(t, t1, tx) = tx + e
t+t1
2

satisfies the conditions of Theorem 8. Hence the corresponding x-algebra is four dimensional.
The chain has the following x-integral

F = e
t1−t

2 + e
t1−t2

2

3. Applications
The conditions derived in the previous section can be used to determine some restrictions on
the form of the function f(x, t, t1, tx) in (1).

Lemma 11 Let the chain (1) have four dimensional characteristic x-ring. Then

f = M(x, t, tx)A(x, t, t1) + txB(x, t, t1) + C(x, t, t1), (12)

where M, A, B and C are some functions.

Proof. Let ftxtx ̸= 0 (if ftxtx = 0 then f obviously has the above form). Since characteristic

x-ring has dimension four the condition (6) holds. It is easy to see that (6) implies that
ftxtxtx
ftxtx

does not depend on t1. Hence

X(ln |ftxtx |) = M1(x, t, tx) and ln |ftxtx | = M2(x, t, tx) +A1(x, t, t1).

The last equality implies (12). �
We can also put some restrictions on the shifts of the function f(x, t, t1, tx) in (1).
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Lemma 12 Let the chain (1) have four dimensional characteristic x-ring and ftxtx ̸= 0. Then

Df = −H1(x, t, t1, t2)tx +H2(x, t, t1, t2)f +H3(x, t, t1, t2), (13)

where H1, H2 and H3 are some functions.

Proof. Note that the shift operator D and the vector field X satisfy

DX =
1

ftx
XD. (14)

The condition (6) can be written as

DX(ln |ftxtx |) =
1

ftx
X(ln |ftxtx | − ln |ftx |3)

Using (14) we get
1

ftx
XD(ln |ftxtx |) =

1

ftx
X(ln |ftxtx | − ln |ftx |3)

which implies that

X

(
ln

∣∣∣∣f3
tx

Dftxtx
ftxtx

∣∣∣∣) = 0 or X

(
f3
tx

Dftxtx
ftxtx

)
= 0.

Thus Dftxtx = H1(x, t, t1, t2)
ftxtx
f3
tx

. Since Dftxtx = DX(ftx) and ftxtx

f3
tx

= − 1
ftx

X( 1
ftx

) we can

rewrite previous equality using (14) as

X

(
Dftx +H1(x, t, t1, t2)

1

ftx

)
= 0

which implies

Dftx = −H1(x, t, t1, t2)
1

ftx
+H2(x, t, t1, t2).

Writing

DX(f) = −H1(x, t, t1, t2)
1

ftx
+H2(x, t, t1, t2)

ftx
ftx

and applying (14) as before we get

X(Df +H1(x, t, t1, t2)tx −H2(x, t, t1, t2)f) = 0.

The last equality gives (13). �
Note that the equality (13) can be written as

t2x = H2(x, t, t1, t2)t1x −H1(x, t, t1, t2)tx +H3(x, t, t1, t2).

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012055 doi:10.1088/1742-6596/670/1/012055

7



References
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