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Abstract. We discuss Yang–Baxter sigma deformations of 4D Minkowski spacetime proposed
recently. To avoid the degeneracy of the standard bilinear form associated with the familiar
coset ISO(1, 3)/SO(1, 3), we consider a slice of AdS5 in Poincaré coordinates by embedding the
4D Poincaé group into the 4D conformal group SO(2, 4). With this procedure we present the
metrics and B-fields as Yang–Baxter deformations which correspond to well-known backgrounds
such as T–duals of Melvin backgrounds, Hashimoto–Sethi and Spradlin–Takayanagi–Volovich
backgrounds, pp-waves, and T–duals of dS4 and AdS4. Finally we consider a deformation with a
classical r-matrix of Drinfeld–Jimbo type and explicitly derive the associated metric and B-field.

1. Introduction
Yang–Baxter sigma models are known to describe systematic integrable deformations of two–
dimensional non-linear sigma models. They have been proposed in [2] and their classical
integrability is shown by constructing the universal expression for the Lax pair [3]. This Klimcik’s
original work [2] [3] employs deformations of principal chiral models on a Lie group G based on
a modified classical Yang–Baxter equation (mCYBE). It has been extended to any symmetric
coset spaces [4] and the classical Yang–Baxter equation (CYBE) [5].

An important application of Yang–Baxter sigma models are integrable deformations of the
superstring on AdS5 × S5 spacetime, which is abbreviated as AdS5 × S5 superstring. The
integrable structure of the AdS5 × S5 superstring has been discovered in [1] in the sense of
the existence of a Lax pair. A remarkable deformation that preserves the integrability of the
AdS5×S5 superstring is the q–deformed AdS5×S5 superstring [6]. The deformation is based on
a mCYBE and the associated background including the fermionic sector are given by [42] [43].
Also the Maldacena–Russo background [11] and the Lax pair are obtained from q–deformed
AdS5 × S5 superstrings by taking a scaling limit [43] [44].

After that, the above models have been generalized to deformations of the AdS5 × S5

superstring based on a classical Yang–Baxter equation [7]. A CYBE has many (skew-symmetric)
classical r–matrices as solutions, in contrast to the mCYBE. Yang–Baxter deformed AdS5 × S5

backgrounds for these classical r–matrices can be identified with the well-known γ–deformation of
S5 [8,9], gravity duals of non-commutative gauge theories [10] [11], Schrödinger spacetimes [12–
14] and gravity duals for dipole theories [15–19], as shown in a series of works [20–24].
Remarkably, these deformations can also be applied to non-integrable backgrounds such as
AdS5×T 1,1 [25]. The deformations of this background [8] [26] can be reproduced as Yang–Baxter
deformations [27] . This correspondence between classical r-matrices and deformed backgrounds
is called as gravity/CYBE correspondence (for a brief review, see [28]).
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Instead of curved spaces, we have generalized this method to flat space in order to study to
the applicability of this correspondence [29]. For flat space, there is the obvious problem that the
standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group.
A possible resolution is that we consider a conformal embedding of 4D Minkowski spacetime
into AdS5 spacetime in the Poincaré coordinates. This method seems work well because we
can reproduce the metric and B–field of well-known backgrounds such as T–duals of Melvin
backgrounds [30, 32, 33], Hashimoto–Sethi backgrounds [34], time-dependent backgrounds of
Spradlin–Takayanagi–Volovich [35], pp-wave backgrounds, and T–duals of dS4 and AdS4 . The
purpose of this article is to give a short review of this work.

The classical r-matrices considered in this note can be divided into two classes. Yang–Baxter
deformations for classical r-matrices of the first class can be interpreted as backgrounds generated
by applying a TsT–transformation to 4D Minkowski spacetime in the string theory sense. Since
T–duality preserves classical integrability of two dimensional sigma models [36–39], Yang–Baxter
sigma models in this class are also classical integrable. In fact, we can construct a general Lax
pair in this case [48]. Another class of classical r-matrices containing the dilatation generator d̂
correspond to non-twisted backgrounds, such as the T–duals of dS4 and AdS4. Although these
backgrounds are classically integrable, we have not succeeded in obtaining a formal proof. Hence,
it is a conjecture that our Yang–Baxter sigma models for this class have classical integrability.

The structure of this article is as follows. In Section 2, we explain the coset construction
of AdS5 spacetime in Poincaré coordinates. After that we will realize flat space as a slice of
the Poincaré AdS5. In Section 3, we introduce Yang–Baxter deformations of 4D Minkowski
spacetime. In Sections 4, we will provide some examples of classical r-matrices and their
associated metrics and two-form B–fields. In Section 5, we extend the formulation from the
CYBE to the mCYBE and then study a deformation with a classical r-matrix of Drinfeld–
Jimbo type. Section 6 is devoted to conclusions and discussion.

2. A coset construction of Minkowski spacetime
Yang–Baxter sigma models need to a non-degenerate bilinear form for their respective group
or coset manifolds. The Killing form of the familiar coset space ISO(1, 3)/SO(1, 3) is however
degenerate because the Poincaré algebra is not a semi-simple algebra. A possible resolution is
to consider instead an embedding of 4D Minkowski spacetime into the Poincaré AdS5 .

2.1. Coset construction of Poincaré AdS5 revisited
Let us consider AdS5 spacetime in Poincaré coordinates. For this purpose, it is helpful to use
the conformal basis for so(2, 4) :

so(2, 4) = spanR{ pµ , nµν , d̂ , kµ | µ, ν = 0, 1, 2, 3 } , (1)

where the translation generator pµ , the Lorentz generators nµν , the dilatation d̂ and the special
conformal generator kµ are represented by, respectively,

pµ ≡ 1

2
(γµ − 2nµ5) , nµν ≡ 1

4
[γµ, γν ] , d̂ ≡ 1

2
γ5 , kµ ≡ 1

2
(γµ + 2nµ5) . (2)

Here we introduced the gamma matrices γµ , γ5 = −iγ0γ1γ2γ3 and nµ5 defined by

nµ5 ≡ 1
4 [γµ, γ5] . (3)

The non-vanishing commutation relations are

[pµ, kν ] = 2(nµν + ηµν d̂ ) , [d̂, pµ] = pµ , [d̂, kµ] = −kµ ,

[pµ, nνρ] = ηµν pρ − ηµρ pν , [kµ, nνρ] = ηµν kρ − ηµρ kν ,

[nµν , nρσ] = ηµσ nνρ + ηνρ nµσ − ηµρ nνσ − ηνσ nµρ . (4)
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It well known that AdS5 spacetime is described by a symmetric coset

AdS5 =
SO(2, 4)

SO(1, 4)
. (5)

Here the Lie algebra so(1, 4) of the stabilizer group SO(1, 4) is given by

so(1, 4) = spanR{
1

2
(pµ − kµ) = −nµ5 | µ = 0, 1, 2, 3 } . (6)

So the coset generators are spanned by 1
2(pµ+kµ) ∼ γµ and d̂ ∼ γ5 . A convenient representative

of the coset (5) is given by

g = exp
[
pµ x

µ
]
exp

[
d̂ log z

]
, (7)

and makes manifest the R4 symmetry in the boundary of AdS5 in Poincaré coordinates. Then,
we can easily get the AdS5 metric in Poincaré coordinates,

ds2 = Tr(AP (A)) =
−(dx0)2 +

∑3
i=1(dx

i)2 + dz2

z2
, (8)

where P is a coset projector from so(2, 4) to so(2, 4)/so(1, 4) and is defined as

P (x) ≡ γ0
Tr(γ0x)

Tr(γ20)
+

3∑
i=1

γi
Tr(γix)

Tr(γ2i )
+ γ5

Tr(γ5x)

Tr(γ25)
(9)

=
1

4

[
−γ0 Tr(γ0x) +

3∑
i=1

γi Tr(γix) + γ5 Tr(γ5x)
]

for x ∈ so(2, 4) . (10)

Note that the AdS radius is set to 1 . This coset projector respects the Z2–grading structure of
the coset space SO(2, 4)/SO(1, 4).

Finally, let us comment on a relation between the projection P and the standard method. In
the usual way, we expand A as

A = g−1dg = eµ
1

2
(pµ + kµ) + e5d̂+ ωµ 1

2
(pµ − kµ) , (11)

where the vielbein and spin connections are

eµ =
dxµ

z
, e5 =

dz

z
, ωµ =

dxµ

z
. (12)

Then it is easy to get the metric on AdS5 spacetime by computing

ds2 = ηµνe
µeν + e5e5 . (13)

Now using the relations

eµ =
1

2
Tr(γµA) , e5 = Tr(d̂A) , (14)

this expression can be rewritten as

ds2 =
1

4
ηµνTr(γ

µA)Tr(γνA) + Tr(d̂A)Tr(d̂A)

= Tr

[
A

1

4
ηµνγµTr(γν A)

]
+Tr

[
A d̂Tr(d̂A)

]
= Tr(AP (A)) . (15)

Thus our method using the coset projector is equivalent to the standard manner.
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2.2. A conformal embedding of 4D Minkowski spacetime
Now we can get the coset space for 4D Minkowski spacetime by embedding ISO(1, 3)/SO(1, 3)
into the Poincaré AdS5. A representative of the group element g is

g = exp
[
pµ x

µ
]
. (16)

Unlike the coset representative for the Poincaré AdS5 (7), the radial coordinate z does not
appear in the above expression. It implies that we realize 4D Minkowski spacetime as a slice of
z = 1 of the Poincaré AdS5.

Note here that the 4D Poincaré algebra iso(1, 3) and the 4D Lorentz algebra so(1, 3) are
generated by the following generators, respectively,

iso(1, 3) = spanR{ nµν , pµ | µ, ν = 0, 1, 2, 3 } ,
so(1, 3) = spanR{ nµν | µ, ν = 0, 1, 2, 3 } .

(17)

Thus it makes sense to use the generators pµ to parameterize the coset representative of
ISO(1, 3)/SO(1, 3) as (16) . Eventually the left-invariant one-form A = g−1dg is written as
a linear combination of pµ .

To avoid the problem of the degeneracy of the Poincaré group ISO(1, 3), we can use the
projector for 4D Minkowski spacetime

P (x) =
1

4

[
−γ0 Tr(γ0x) +

3∑
i=1

γi Tr(γix)
]

for x ∈ so(2, 4) . (18)

Here due to the dimension of the coset space, we have dropped γ5 ∼ d̂ from the projector P .
Because the projected one-form P (A) is expanded in terms of γµ(µ = 0, 1, 2, 3), we can obtain
the flat metric

ds2 = Tr(AP (A)) = −(dx0)2 +

3∑
i=1

(dxi)2 . (19)

Note that this computation is equivalent to the standard method using the vierbein like in the
Poincaré AdS5 case. This result is the starting point of our argument in the following.

3. Yang–Baxter sigma models for 4D Minkowski spacetime
In this section, we consider Yang–Baxter deformations of two-dimensional sigma models with
4D Minkowski spacetime as target space. Next we present a classification of classical r-matrices
with values in so(2, 4)⊗ so(2, 4) .

3.1. Deformed action
Following the above coset construction of flat space, we introduce Yang–Baxter sigma models
for 4D Minkowski spacetime.

The deformed action is given by1

S = −1

2

∫ ∞

−∞
dτ

∫ 2π

0
dσ (γαβ − ϵαβ) Tr

[
AαP ◦ 1

1− 2ηRg ◦ P
(Aβ)

]
, (20)

1 Here the string tension T = 1
2πα′ is set to 1, and the conformal gauge is taken so as to drop the dilaton coupling

to the world-sheet scalar curvature.
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where Aα = g−1∂αg and g is given in Eq. (16) . Here η is a deformation parameter and the
action (20) is reduced to the undeformed one for η = 0 . γαβ = diag(−1, 1) and ϵαβ are the
world sheet metric and the anti-symmetric tensor that is normalized as ϵτσ = 1, respectively.
The operator Rg is defined as

Rg ≡ g−1R(gXg−1)g , (21)

where a linear operator R : so(2, 4) → so(2, 4) is a solution of the CYBE ,[
R(M), R(N)

]
−R ([R(M), N ] + [M,R(N)]) = 0 , M,N ∈ so(2, 4) . (22)

The R-operator is related to the skew-symmetric classical r-matrix in the tensorial notation
through

R(X) = Tr2[r(1⊗X)] =
∑
i

(aiTr(biX)− biTr(aiX)) , (23)

where the classical r-matrix is given by

r =
∑
i

ai ∧ bi ≡
∑
i

(ai ⊗ bi − bi ⊗ ai) (24)

satisfying the CYBE,
[r12, r13] + [r12, r23] + [r13, r23] = 0 . (25)

The generators ai, bi are elements of so(2, 4) .

To obtain deformed backgrounds, it is convenient to rewrite the deformed Lagrangian as

L = −1

2
Tr [A−P (J+)] , (26)

where J± is a deformed current defined as

J± ≡ 1

1∓ 2ηRg ◦ P
A± , A± = Aτ ±Aσ . (27)

By solving the equations

(1∓ 2ηP ◦Rg)P (J±) = P (A±) , (28)

the projected deformed current P (J±) is determined. Then the metric and NS-NS two-form are
given by the symmetric and skew-symmetric parts regarding to worldsheet coordinates in the
deformed Lagrangian, respectively.

3.2. Classification of classical r-matrices
One can organize the classical r-matrices as follows:

(a) r = Poincaré ∧ Poincaré
1. abelian e.g., r ∼ p3 ∧ n12 , 2. non-abelian e.g., r ∼ p1 ∧ n12 ,

(b) r = Poincaré ∧ non-Poincaré

1. abelian e.g., r ∼ n12 ∧ d̂ , 2. non-abelian e.g., r ∼ p0 ∧ d̂ ,

(c) r = non-Poincaré ∧ non-Poincaré

1. abelian e.g., r ∼ k1 ∧ k2 , 2. non-abelian e.g., r ∼ k0 ∧ d̂ .
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Here, given a classical r-matrix r = a ∧ b , the word (non-)abelian means that a and b (do not)
commute each other.

We consider Yang–Baxter deformations of 4D Minkowski spacetime for the classes (a)-1 and
(b)-2 in the following. The class (a)-1 corresponds to classical r-matrices associated with various
kinds of TsT–transformations. Let α and β be dual coordinates for the generators a and b in the
sense of the Lie algebra. Concretely for r ∼ p3 ∧ n12, we take α = x3 and β = θ is the angular
coordinate in the x1-x2 plane. Then the corresponding TsT–transformation is the following
sequence of T–dualities and shifts: 1. T–dualize along α to α̃ ; 2. Replace α̃ with α̃ + η β ; 3.
Finally, T–dualize along the α̃ direction. Of course the coordinates α and β are compactified
with periodic boundary conditions under this sequence. Since we have succeeded to construct
Lax pairs for these r-matrices, Yang–Baxter sigma models for the class (a)-1 certainly describe
integrable deformations of 4D-Minkowski spacetime.

In the case of the class (b)-2, T-duals of dS4 and AdS4 are realized from r ∼ p0 ∧ d̂

and r ∼ p3 ∧ d̂ , respectively. These backgrounds cannot be reproduced by applying TsT–
transformations to flat space like for the class (a)-1. Although two-dimensional non-linear sigma
models with these target spaces are classically integrable, we do not have a formal proof or
explicit construction of the Lax pairs. Hence it is a conjecture that Yang–Baxter sigma models
in the class (b)-2 are classically integrable. For a more comprehensive list of classical r-matrices,
see [47].

4. Deformed backgrounds
4.1. TsT–duals of flat space
In this subsection, we present deformed backgrounds associated with classical r-matrices in
the class (a)-1. Here we assume the extra six dimensions to be flat (as resulting from a T 6-
compactification) and we introduce only a dilaton field. All backgrounds are identified with a
TsT–transformation of flat space.

T-dual of Melvin background First, let us consider the r-matrix

r =
1

2
p3 ∧ n12 . (29)

The associated deformed metric and B–field are T–dual to a Melvin background:

ds2 = −(dx0)2 + dr2 +
r2dθ2 + (dx3)2

1 + η2r2
,

B =
ηr2

1 + η2r2
dθ ∧ dx3 ,

(30)

where we have performed a coordinate transformation,

x1 = r cos θ , x2 = r sin θ . (31)

It should be remarked that the Yang–Baxter deformations cannot reproduce the associated
dilaton, although it may be possible to perform a supercoset construction in principle. However
we can embed the background into string theory by observing that the one-loop beta function
vanishes when adding the dilaton [31–33]

Φ = −1

2
log(1 + η2r2) . (32)
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This background can also be constructed by applying a sequence of a TsT–transformation to
flat space as noted above. More concretely, the sequence in this case is 1.T–duality in x3; 2. shift
θ → θ+η x̃3; 3.T–duality in x̂3. Consistency requires x̃3 to be periodic with period x̃3 ≃ x̃3+2π/η
and x3 with period2 x3 ≃ x3 + α′η/(2π).

pp-wave background Let us consider the classical r-matrix

r =
1

2
√
2
(p0 − p3) ∧ n12 . (33)

The associated deformed background is

ds2 = −2dx+dx− − η2r2(dx+)2 + (dr)2 + r2dθ2 ,

B = ηr2 dx+ ∧ dθ ,
(34)

where we have introduced the polar coordinate system for x1 and x2 given by

x1 = r cos θ , x2 = r sin θ . (35)

This is a pp-wave background which can also be understood as a generalization of a (null) TsT
transformation obtained as 1. a T–duality from θ to θ̃, followed by 2. the shifts x0 → ηθ̃ + x0,
x3 → −ηθ̃ + x3 and the final 3. T–duality from θ̃ to θ.

Note that this requires the identifications x0 ≃ x0 + α′η/(2π) and x3 ≃ x3 + α′η/(2π).

Hashimoto–Sethi background Next we consider the following abelian classical r-matrix

r =
1

2
√
2
p2 ∧ (n01 + n13) . (36)

The resulting metric and B–field are given by

ds2 = −2dx−dx+ +
1

1 + η2(x+)2
[(dx1)2 + (dx2)2 + η2x1dx+(2x+dx1 − x1dx+)] ,

B =
η

1 + η2(x+)2
(x1dx+ − x+dx1) ∧ dx2 .

(37)

Note that this background depends on the light-cone time x+ explicitly. The associated dilaton

to complete the string embedding is taken to be

Φ = −1

2
log(1 + η2(x+)2) . (38)

The metric and B–field (37) agree with those of the Hashimoto–Sethi background. To show
this agreement, one has to introduce new coordinates,

x+ = y+ , x1 = y+y , x− = y− +
1

2
y+(y)2, x2 = −z . (39)

Under this coordinate transformation, the above deformed background (37) becomes

ds2 = −2dy+dy− +
(y+)2(dy)2 + dz2

1 + η2(y+)2
,

B =
η (y+)2

1 + η2(y+)2
dy ∧ dz . (40)

This reproduces the expression in Eq. (25) of [34] where the background is shown to be the result
of a TsT–transformation for U(1)× U(1) isometries which are shifts of the y and z directions.
2 We reintroduce the explicit parameter α′ in the identifications to manifestly illustrate the dimensions of the
variables.
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Spradlin–Volovoich–Takayanagi background Let us here consider the classical r-matrix

r =
1

2
n12 ∧ n03 . (41)

Then the associated metric and B–field are given by

ds2 = −dt2 + dr2 +
r2dθ2 + t2dϕ2

1 + η2r2t2
,

B =
ηr2t2

1 + η2r2t2
dϕ ∧ dθ ,

(42)

where we have introduced new coordinates

x0 = t coshϕ , x3 = t sinhϕ . (43)

Note that the coordinates in (43) do not cover the whole x0-x3 plane and the background (42)
contains no singularity. Then the metric and B–field in (42) agree with those of (6.1) in [35].
This is a time-dependent background realized by a TsT–transformation of Minkowski spacetime
on the torus generated by ϕ and θ. The associated dilaton is

Φ = −1

2
log(1 + η2r2t2) . (44)

4.2. Non-Twist cases
We consider Yang-Baxter deformations of type (b)-1 in the following. In this article, we present
two examples, the T–duals of dS4 and AdS4, associated with classical r-matrices that contain
the dilation generator d̂. One can find more examples for this type in [29].

T–dual of dS4 Let us consider the non-abelian r-matrix

r =
1

2
p0 ∧ d̂ with [d̂ , p0] = p0 . (45)

This r-matrix was used to deform the conformal algebra so(2, 4) in [41]. The resulting
background is

ds2 =
−(dx0)2 + dr2

1− η2r2
+ r2(dθ2 + sin2θ dϕ2) ,

B =
ηr

1− η2r2
dx0 ∧ dr ,

(46)

where we have introduced new coordinates r , θ and ϕ through

x1 = r cosϕ sin θ , x2 = r sinϕ sin θ , x3 = r cos θ . (47)

Note here that the above B–field can be rewritten in the form of a total derivative. One
can understand this background as T–dual of four dimensional de Sitter space by following
transformation. Firstly, we take a timelike T–duality along the x0 direction [40]. The deformed
metric becomes

ds2 = (dr + ηr dx0)2 − (dx0)2 + r2(dθ2 + sin2θ dϕ2) . (48)

Note that the B–field has disappeared due to the T–duality along the x0 direction. Next we
introduce the new coordinate

x0 = t− 1

2η
log(η2r2 − 1) . (49)

In this way, we get the well-known metric of dS4 in static coordinates,

ds2 = −(1− η2r2)dt2 +
dr2

1− η2r2
+ r2(dθ2 + sin2θdϕ2). (50)

Note that there is a cosmological horizon at r = 1/η .
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T–dual of AdS4 As another example, let us consider the classical r-matrix

r =
1

2
d̂ ∧ p1 with [d̂ , p1] = p1 . (51)

This r-matrix also contains the dilatation d̂ . The associated metric and B–field are given by

ds2 =
dt2 + (dx1)2

1 + η2t2
+ t2 cosh2 ϕdθ2 − t2dϕ2 ,

B =
ηt

1 + η2t2
dt ∧ dx1 ,

(52)

where we have introduced new coordinates t , θ and ϕ through

x0 = t sinhϕ , x2 = t cos θ coshϕ , x3 = t sin θ coshϕ . (53)

Note here that the B–field can be recast as a total derivative.

As in the previous case, it is nice to perform a T–duality along the x1-direction. Then the
resulting background is given by3

ds2 = (dt− ηt dx1)2 + (dx1)2 + t2(−dϕ2 + cosh2 ϕdθ2) . (54)

Now the B–field has disappeared. Let us perform a coordinate transformation,

x1 = y +
1

2η
log(η2t2 + 1) . (55)

Then the resulting metric is given by

ds2 = (1 + η2t2)dy2 +
dt2

1 + η2t2
+ t2(−dϕ2 + cosh2 ϕdθ2) . (56)

By replacing the coordinates (with a double Wick rotation) by

y → it , t → r , ϕ → iθ , θ → ϕ , (57)

one can obtain the standard metric of AdS4 with global coordinates

ds2 = −(1 + η2r2)dt2 +
dr2

1 + η2r2
+ r2(dθ2 + cos2 θ dϕ2) . (58)

Note that η2 measures the curvature.

5. A Yang–Baxter deformation with mCYBE
So far, we have considered classical r-matrices satisfying the classical Yang–Baxter equation (25)
(or (22)). Here, as an exceptional case, let us consider a classical r-matrix of Drinfeld–Jimbo
(DJ) type,

rDJ = −i
∑

1≤i<j≤4

Eij ∧ Eji , (Eij)kl ≡ δikδjl , (59)

3 Note that, at this stage, one can see that this metric describes AdS4 by explicitly computing the scalar curvature
and the Ricci tensor.
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which satisfies the modified Yang–Baxter equation,[
R(M), R(N)

]
−R ([R(M), N ] + [M,R(N)]) = [M,N ] , (60)

where M,N ∈ so(2, 4). In comparison to the CYBE in (22) , the right-hand side of (60) is
modified. The overall factor of the classical r-matrix is determined by a reality condition of the
deformed B–field. The r-matrix (59) was used to construct an integrable deformation of the
AdS5 × S5 superstring [6]. The deformed metric and B–field were explicitly computed in [42].

Since we are only interested in the associated background, the computation scheme is identical
to the one of the CYBE case.

The resulting metric and B–field are given by

ds2 = −r2 sin2 θ dt2 + dr2 +
r2

1 + η2 r4 sin2 θ

(
dθ2 + cos2 θ dϕ2

)
,

B = − η r4 sin θ cos θ

1 + η2 r4 sin2 θ
dθ ∧ dϕ .

(61)

Here we have performed a coordinate transformation,

x0 = r sin θ sinh t , x1 = r cos θ cosϕ ,

x2 = r cos θ sinϕ , x3 = r sin θ cosh t , (62)

and rescaled η → η/2 . It is worth noting that the metric in (61) is be regular as opposed to the
case of the q-deformed AdS5 superstring. The scalar curvature has no singularity. The singular
surface of the metric identified in [42] has not appeared due to the fact that we are now working
on a slice of the Poincaré AdS5 at z = 1 .

6. Conclusion and Discussion
In this article, we have presented a brief review of Yang–Baxter deformations of 4D Minkowski
spacetime. The essential point is to realize 4D Minkowski spacetime by embedding the Poincaré
AdS5 to avoid the degeneracy of the Killing form for a standard coset ISO(1, 3)/SO(1, 3).
Following this prescription, we can reproduce the metric and B–field of well-known backgrounds
such as T–duals of Melvin backgrounds, Hashimoto–Sethi backgrounds, time-dependent
backgrounds of Spradlin–Takayanagi–Volovich, pp-wave backgrounds, and T–duals of dS4 and
AdS4 . Finally, we have considered the Yang–Baxter deformation for Drinfeld–Jimbo r-matrix
and present the associated deformed background explicitly. The list of correspondences between
deformed backgrounds and classical r-matices is given in Table 1.

There are many open questions. Since the Lax pairs associated with classical r-matrices
for the class (a)-1 have been constructed explicitly, our Yang–Baxter sigma model describe
integrable deformations in this class at least. However we have not yet constructed Lax pairs
for the class (b)-2, although the sigma models with the resulting deformed backgrounds are
classically integrable. It would be interesting to study the form of the Lax pairs and the
associated deformed algebra for these cases.

In particular, deformed Poincaré algebras are studied in [45] in terms of classical r-matrices.
These r-matrices are contained in the class (a). As a first step to clarify the relations between
the list [47] and our results, the associated backgrounds and corresponding Lax pairs for special
cases of the class (a)-2 that describe so-called κ-deformations of the 4D Poincaré algebra are
given in a forthcoming paper [49].
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r-matrix Type of Twist Background

pi ∧ pj (i, j = 1, 2, 3) Melvin Shift Twist Seiberg-Witten
p0 ∧ pi Melvin Shift Twist NCOS

(p0 + pi) ∧ pj (i ̸= j) Null Melvin Shift Twist light-like NC
1
2p3 ∧ n12 Melvin Twist T–dual Melvin

1
2
√
2
p2 ∧ (n01 + n13) Melvin Null Twist Hashimoto–Sethi
1
2n12 ∧ n03 R Melvin R Twist Spradlin–Takayanagi–Volovich
1
2p1 ∧ n03 Melvin Boost Twist T–dual of Grant space

1
2
√
2
(p0 − p3) ∧ n12 Null Melvin Twist pp-wave

1
2
√
2
(d̂− n03) ∧ (p0 − p3) Non-Twist pp-wave

1
2 d̂ ∧ p0 Non-Twist T–dual of dS4
1
2 d̂ ∧ p1 Non-Twist T–dual of AdS4

DJ-type (mCYBE) Non-Twist q-deformation (?)

Table 1. A catalog of classical r-matrices and the associated backgrounds.

It would be most important to generalize our argument to 10D Minkowski spacetime in order
to extend our argument to a consistent string theory. For this purpose, we have to consider
the 10D conformal group SO(2, 10) and realize 10D Minkowski spacetime as a slice of 11D AdS
space in Poincaré coordinates. We expect that in this case, 10D supersymmetric configurations
like the fluxtrap backgrounds [46] could be reproduced as Yang–Baxter deformations.

Our discussion has been constrained to the bosonic sector. As opposed to deformations of
AdS5×S5, it is an easier task to generalize our computations to a supercoset construction than
the AdS5×S5 case. In recent work, deformations of the AdS5×S5 superstring for the class (a)-1
have been reinterpreted as twisted boundary conditions of the undeformed AdS5 × S5 [44]. We
can apply a similar analysis to the flat space case. Thus since for the class (a)-1 deformed sigma
models on Yang–Baxter deformed Minkowski spacetime are equivalent to undeformed sigma
models up to boundary conditions, one can quantize it and get its quantum spectrum. It would
be very interesting to investigate the relation between the string spectrum and Yang–Baxter
deformations including the fermionic sector.
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