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Abstract. The Bondi−Metzner−Sachs (BMS) group B is the common asymptotic group of
all asymptotically flat (lorentzian) space−times, and is the best candidate for the universal
symmetry group of General Relativity (G.R.). B admits generalizations to real space−times
of any signature, to complex space−times, and supersymmetric generalizations for any
space−time dimension. With this motivation McCarthy constructed the strongly continuous
unitary irreducible representations (IRs) of B some time ago, and he identified B(2, 2) as
the generalization of B appropriate to the to the ultrahyperbolic signature (+,+,−,−) and
asymptotic flatness in null directions. We continue this programme by introducing a new group
UHB(2, 2) in the group theoretical study of ultrahyperbolic G.R. which happens to be a proper
subgroup of B(2, 2). We report on the first general results on the representation theory of
UHB(2, 2). In particular the main general results are that the all little groups of UHB(2, 2) are
compact and that the Wigner−Mackeys inducing construction is exhaustive despite the fact
that UHB(2, 2) is not locally compact in the employed Hilbert topology.

1. Introduction
In 1939 Wigner laid the foundations of special relativistic quantum mechanics and
relativistic quantum field theory by constructing the Hilbert space strongly continuous unitary
irreducible representations (IRs) of the (universal cover) of the Poincare group P . The
Bondi−Metzner−Sachs (BMS) group B is the common asymptotic group of all curved real
lorentzian space−times which are asymptotically flat in future null directions [1, 2], and is the
best candidate for the universal symmetry group of G.R.. In a quantum setting the universal
property of B for G.R. make it reasonable to attempt to lay a similarly firm foundation for
quantum gravity by following through the analogue of Wigner’s programme with B replacing P .
Some years ago McCarthy constructed explicitly [3, 4, 5, 6, 7, 8, 9, 10] the IRs of B for exactly
this purpose. This work was based on G.W.Mackey’s pioneering work on group representations
[11, 12, 13, 14, 15]; in particular an extension to the relevant infinite−dimensional case of his
semi−direct product theory.

It is difficult to overemphasize the importance of Piard’s results [16, 17] who soon afterwards
proved that all the IRs of B, when this is equipped with the Hibert topology, are derivable by
the inducing construction. This proves the exhaustivity of McCarthy’s list of representations
and renders his results even more important.

However, in quantum gravity, complexified or euclidean versions of G.R. are frequently
considered and the question arises: Are there similar symmetry groups for these versions of
the theory? McCarthy constructed [18], in abstract form, all possible analogues of B, both real
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and in any signature, or complex, with all possible notions of asymptotic flatness ‘near infinity’.
There are, in fact, forty−one such groups. These abstract constructions were given in a quantum
setting; the paper was concerned with finding the IRs of the groups G in Hilbert spaces (especially
for the complexification CB of B itself). It was argued that these Hilbert space representations
were related to elementary particles and quantum gravity (via gravitational instantons).

Let B(2, 2) be the BMS group G appropriate to the ‘ultrahyperbolic signature’ and asymptotic
flatness in null directions. B(2, 2), is like B itself, based on a null cone [18], and it is given by

B(2, 2) = C∞
e (T 2, R)sTG

2 (1)

,i.e., it is the semi−direct product of the groupG2, whereG = SL(2, R), times the abelian normal
subgroup C∞

e (T 2, R) of so called supertranslations; C∞
e (T 2, R) is the set of even real−valued

infinitely−differentiable functions defined on the 2−Torus T 2 = S1 × S1, S1 being the set of
vectors of unit length in R2 − {0}. That is the functions α(m,n) ∈ C∞

e (T 2, R) satisfy the
even−ness condition

α(m,n) = α(−m,−n),

where, m = x
|x| , x = (x1, x2) ∈ R2 − {0}, and, similarly, n = y

|y| , y = (y1, y2) ∈ R2 − {0}. The

representation theory of B(2, 2) has been initiated elsewhere [19, 20].
The present paper reports the first general results on the representation theory of

UHB(2, 2) = C∞(P1(R)× P1(R), R)sTG
2, (2)

P1(R) = S1/Z2 being the one−dimensional real projective space (the circle quotient the
antipodal map). UHB(2, 2) arises naturally in the construction of the generalizations of B
given in [18] but it remained unnoticed in [18]. The crucial difference between UHB(2, 2) and
B(2, 2) is that for UHB(2, 2) the supertranslations are completely unconstrained, whereas, for
B(2, 2) they are described by even functions on the torus T 2. The representation theory of
UHB(2, 2) has been initiated in [21, 22, 23].

2. The group UHB(2, 2)
Recall that the ultrahyperbolic version of Minkowski space is the vector space R4 of row vectors
with 4 real components, with scalar product defined as follows. Let x, y ∈ R4 have components
xµ and yµ respectively, where µ = 0, 1, 2, 3. Define the scalar product x.y between x and y by

x.y = x0y0 + x2y2 − x1y1 − x3y3. (3)

Then the ultrahyperbolic version of Minkowski space, sometimes written R2,2, is just R4 with
this scalar product.

In [21] it was shown that

Theorem 1 The group UHB(2, 2) can be realised as

UHB(2, 2) = L2(P, λ,R)⃝s TG
2 (4)

with semi−direct product specified by

(T (g, h)α)(x, y) = kg(x)sg(x)kh(w)sh(w)α(xg, yh), (5)

where α ∈ L2(P, λ,R) and (x, y) ∈ P. For ease of notation, we write P for the torus
T ≃ P1(R) × P1(R), P1(R) is the one−dimensional real projective space, and G for G × G,
G = SL(2, R). In analogy to B, it is natural to choose a measure λ on P which is invariant
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under the maximal compact subgroup SO(2)× SO(2) of G. L2(P, λ,R) is the separable Hilbert
space of real−valued functions defined on P.

Moreover, if g ∈ G is [
a b
c d

]
, (6)

then the components x1, x2 of x ∈ R2 transform linearly, so that the ratio x = x1/x2 transforms
fraction linearly. Writing xg for the transformed ratio,

xg =
(xg)1
(xg)2

=
x1a+ x2c

x1b+ x2d
=
xa+ c

xb+ d
. (7)

The factors kg(x) and sg(x) on the right hand side of (5) are defined by

kg(x) =

{
(xb+ d)2 + (xa+ c)2

1 + x2

} 1
2

, (8)

sg(x) =
xb+ d

|xb+ d|
, (9)

with similar formulae for yh, kh(y) and sh(y).
It is well known that the topological dual of a Hilbert space can be identified with the

Hilbert space itself, so that we have L2
′
(P, λ,R) ≃ L2(P, λ,R). In fact, given a continuous

linear functional ϕ ∈ L2
′
(P, λ,R), we can write, for α ∈ L2(P, λ,R)

(ϕ, α) =< ϕ,α > (10)

where the function ϕ ∈ L2(P, λ,R) on the right is uniquely determined by (and denoted by the

same symbol as) the linear functional ϕ ∈ L2
′
(P, λ,R) on the left. The representation theory

of UHB(2, 2) is governed by the dual action T ′ of G on the topological dual L2
′
(P, λ,R) of

L2(P, λ,R). The dual action T ′ is defined by:

< T ′(g, h)ϕ, α >=< ϕ, T (g−1, h−1)α > · (11)

A short calculation gives

(T ′(g, h)ϕ)(x, y) = k−3
g (x)sg(x)k

−3
h (y)sh(y)ϕ(xg, yh). (12)

Now, this action T ′ of G on L2
′
(P, λ,R), given explicitly above, is like the action T of G on

L2(P, λ,R), continuous. The ‘little group’ Lϕ of any ϕ ∈ L2
′
(P, λ,R) is the stabilizer

Lϕ = {(g, h) ∈ G | T ′(g, h)ϕ = ϕ}. (13)

By continuity, Lϕ ⊂ G is a closed subgroup.

3. Representation theory
Let A and G be topological groups, and let T be a given homomorphism from G into
the group of automorphisms Aut(A) of A. Suppose A is abelian and H = A⃝s TG is the
semi−direct product of A and G, specified by the continuous action T : G −→ Aut(A). In
the product topology of A × G , H then becomes a topological group. It is assumed that it
becomes a separable locally compact topological group.
In order to give the operators of the induced representations explicitly it is necessary ([11], [12],
[13], [14], [15] and references therein) to give the following information
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(i) An irreducible unitary representation U of Lϕo on a Hilbert space D for each Lϕo .

(ii) A G −quasi−invariant measure µ on each orbit Gϕ ≈ G/Lϕo ; where Lϕo denotes the

little group of the base point ϕo ∈ A
′
of the orbit Gϕo; A

′
is the topological dual of A.

Let Dµ be the space of functions ψ : G → D which satisfy the conditions

(a) ψ(gl) = U(l−1)ψ(g) (g ∈ G, l ∈ Lϕ)

(b)
∫
Gϕo

< ψ(q), ψ(q) > dµ(q) <∞,

where the scalar product under the integral sign is that of D. Note, that the constraint (a)
implies that < ψ(gl), ψ(gl) >=< ψ(g), ψ(g) >, and therefore the inner product < ψ(g), ψ(g) >,
g ∈ G, is constant along every element q of the coset space G/Lϕo ≈ Gϕo. This allows to assign
a meaning to < ψ(q), ψ(q) >, where q = gLϕo , by defining < ψ(q), ψ(q) >:=< ψ(g), ψ(g) > .
Thus the integrand in (b) becomes meaningful due to the condition (a). A pre−Hilbert space
structure can now be given to Dµ by defining the scalar product

< ψ1, ψ2 >=

∫
Gϕo

< ψ1(q), ψ2(q) > dµ(q), (14)

where ψ1, ψ2 ∈ Dµ. It is convenient to complete the space Dµ with respect to the norm defined
by the scalar product (14). In the resulting Hilbert space, functions are identified whenever they
differ, at most, on a set of µ−measure zero. Thus our Hilbert space is

Dµ = L2(Gϕo, µ,D). (15)

Define now an action of H = A⃝s TG on Dµ by

(goψ)(q) =

√
dµgo
dµ

(q)ψ(g−1
o q), (16)

αψ(q) = ei<goϕo,α>ψ(q) (17)

where, go ∈ G, q ∈ Gϕo, and α ∈ A. Eqs. (16) and (17) define the IRs of HB induced for

each ϕo ∈ A
′
and each irreducible representation U of Lϕo . The ‘Jacobian’

dµgo
dµ of the group

transformation is known as the Radon−Nikodym derivative of µgo with respect to µ and ensures
that the resulting IRs of HB are unitary.
The central results of induced representation theory ([11], [12], [13], [14], [15] and references
therein) are the following

(i) Given the topological restrictions on H = A⃝s TG (separability and local compactness), any
representation of H, constructed by the method above, is irreducible if the representation
U of Lϕo on D is irreducible. Thus an irreducible representation of H is obtained for

each ϕo ∈ A
′
and each irreducible representation U of Lϕo .

(ii) If H = A⃝s TG is a regular semi−direct product (i.e., A
′
contains a Borel subset which

meets each orbit in A
′
under H in just one point) then all of its irreducible representations

can be obtained in this way.
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4. Obstructions and resolutions
Two remarks are in order regarding the representations of UHB(2, 2) obtained by the above
construction

(i) As it is explained in [21] the subgroup L2(P, λ,R) of UHB(2, 2) = L2(P, λ,R) ⃝s TG is
topologised as a (pre) Hilbert space by using a natural measure on P = P1(R)×P1(R) and
by introducing a scalar product into L2(P, λ,R). If R8 is endowed with the natural metric
topology then the group G = SL(2, R)× SL(2, R), considered as a subset of R8, inherits
the induced topology on G. In the product topology of L2(P, λ,R)× G UHB(2, 2) is a
non−locally compact group (the proof follows without substantial change Cantoni’s proof
[24], see also [3]). (In fact the subgroup L2(P, λ,R), and therefore the group UHB(2, 2)
can be employed with many different topologies. The Hilbert type topology employed here
appears to describe quantum mechanical systems in asymptotically flat space−times [9]).
Since in the Hilbert type topology UHB(2, 2) = L2(P, λ,R)⃝s TG is not locally compact
the theorems dealing with the irreducibility of the representations obtained by the above
construction no longer apply (see e.g. [13]). However, it can be proved that the induced
representations obtained above are irreducible. The proof follows very closely the one given
in [6] for the case of the original BMS group B.

(ii) Here it is assumed that UHB(2, 2) is equipped with the Hilbert topology. It is of outmost
significance that it can be proved [21] that in this topology UHB(2, 2) is a regular
semi−direct−product. The proof follows the corresponding proof [16, 17] for the group

B. Regularity amounts to the fact that [12] L2
′
(P, λ,R) can have no equivalent classes of

quasi−invariant measures µ such that the action of G is strictly ergodic with respect to
µ. When such measures µ do exist it can be proved [12] that an irreducible representation
of the group, with the semi−direct−product structure at hand, may be associated with
each that is not equivalent to any of the IRs constructed by the Wigner−Mackey’s inducing
method. In a different topology it is not known if UHB(2, 2) is a regular or irregular
semi−direct−product. Irregularity of UHB(2, 2) in a topology different from the Hilbert
topology would imply that there are IRs of UHB(2, 2) that are not not equivalent to
any of the IRs obtained above by the inducing construction. Strictly ergodic actions are
notoriously hard to deal with even in the locally compact case. Indeed, for locally compact
non−regular semi−direct products, there is no known example for which all inequivalent
irreducibles arising from strictly ergodic actions have been found. For the other 41 groups
defined in [18] regularity has only been proved for B [16, 17] when B is equipped with the
Hilbert topology. Similar remarks apply to all of them regarding IRs arising from strictly
ergodic actions in a given topology.

5. Results
The new results are: A new group UHB(2, 2) is introduced for the group theoretical study of
ultrahyperbolic G.R.. UHB(2, 2) is a proper subgroup of the group B(2, 2) initially proposed
in [18] as appropriate to the ‘ultrahyperbolic signature’ and asymptotic flatness in null direc-
tions. Both UHB(2, 2) and B(2, 2) are based on the null cone N of R2,2. The crucial difference
between UHB(2, 2) and B(2, 2) is that the supertranslations in the case of UHB(2, 2) are free
functions defined on P1(R) × P1(R), whereas in the case of B(2, 2) the supertranslations are
even functions defined on S1 × S1. Remarkably, it is the nature of the supertranslations of
UHB(2, 2) which allows to establish contact [21] of the representation theory of UHB(2, 2) with
standard representation theory; something which is not feasible for the representation theory
of B(2, 2). UHB(2, 2) captures more efficiently, via its subgroup L2(P, λ,R), the fundamental
characteristic of R2,2, namely, that there is no clear−cut distinction of past and future in R2,2.
In [21] it is proved that when UHB(2, 2) is employed with the Hilbert topology all little groups
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of UHB(2, 2) are compact. Moreover in [21] it is shown that the Wigner−Mackey’s inducing
construction is exhaustive despite the fact that UHB(2, 2) is not locally compact in the employed
Hilbert topology. This result is rather important because other group theoretical approaches
to quantum gravity which invoke Wigner−Mackey’s inducing construction (see e.g. [25]) are
typically plagued by the non−exhaustiveness of the inducing construction which results pre-
cisely from the fact that the group in question is not locally compact in the prescribed topology.
Exhaustiveness is not just a mathematical nicety: If the inducing construction is not exhaustive
one cannot simply know if the most interesting information or part of it is coded in the irre-
ducibles which cannot be found by the Wigner−Mackey’s inducing procedure. These results,
compactness of the little groups and exhaustiveness of the inducing construction, not only are
they significant for the group theoretical approach to quantum gravity advocated here, but also
they have repercussions [21] for the other approaches to quantum gravity.

In comparing the representation theory of UHB(2, 2) [21, 22, 23] with the representation theory
of B(2, 2) [19, 20], we find both similarities and differences. The key difference between
UHB(2, 2) and B(2, 2), the supertranslations in the case of UHB(2, 2) are free functions defined
on P1(R)×P1(R), whereas in the case of B(2, 2) the supertranslations are even functions defined
on S1×S1, leaves its trace on the representation theory: the proof [21] of compactness for little
groups of UHB(2, 2) is similar to, but subtly different from, the corresponding proof [19] for
B(2, 2). On the other hand, an interesting similarity between UHB(2, 2) and B(2, 2) lies in
the structure of their little groups: Their one−dimensional little groups form an unexpected
family of continuous/discrete groups (with many connected components). Also, their finite
little groups involve subgroups of direct products of the symmetry groups of the regular polygons
only; the regular polyhedra do not appear at all here. The regular polyhedra appear [5] in the
representation theory of the ordinary Bondi−Metzner−Sachs group.
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