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Abstract. The classical theorem of M. Riesz about the conjugate harmonic functions is
extended onto octonion-valued monogenic functions.

1. Introduction and Statement of the Main Result
Analytic (monogenic) functions of octonion variables, due to their potential, yet not completely
fulfilled utility in physics [9], continue to attract the attention of researchers. John C. Baez in his
very readable and informative survey formulates the development of an octonionic analogue of
the theory of analytic functions as the first item in his list of potential octonion-related problems
[3, p. 201]. In this note we continue the study of this topic, see, e.g., [5, 10, 11, 13, 14] and
the references therein. For the reader’s convenience, in this section we briefly review some basic
definitions and then state the principal result, extending the celebrated theorem of M. Riesz
on the conjugate harmonic functions onto the monogenic functions. A quaternionic version of
this theorem was recently proved by Avetisyan [2]. Let

∑7
j=0 xjej be a generic octonion, where

e0 ≡ 1, and e1, . . . , e7 are the basis octonion (imaginary) units; we identify it with a vector
x = (x0, . . . , x7) ∈ R8. In notation we follow [5]. Let

f(x) =

7∑
j=0

ejfj(x)

be an octonion-valued left-monogenic function in a domain Ω ⊂ R8, where f0(x), . . ., f7(x) are
real-valued C1 functions. That means

D[f ] = 0 (1.1)

where D =
∑7

k=0 ek
∂

∂xk
is the Dirac (or Cauchy-Riemann) operator. It is known that

all the components f0, . . . , f7 of a left-monogenic function are harmonic functions, that is,
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∆f0 = · · · = ∆f7 = 0 in Ω. The equation Df = 0 is a system of eight first-order linear
partial differential equations with constant coefficients. It can be written as a matrix equation

∂
∂x0

− ∂
∂x1

− ∂
∂x2

− ∂
∂x3

− ∂
∂x4

− ∂
∂x5

− ∂
∂x6

− ∂
∂x7

∂
∂x1

∂
∂x0

− ∂
∂x3

∂
∂x2

− ∂
∂x7

∂
∂x6

− ∂
∂x5

∂
∂x4

∂
∂x2

∂
∂x3

∂
∂x0

− ∂
∂x1

− ∂
∂x6

− ∂
∂x7

∂
∂x4

∂
∂x5

∂
∂x3

− ∂
∂x2

∂
∂x1

∂
∂x0

∂
∂x5

− ∂
∂x4

− ∂
∂x7

∂
∂x6

∂
∂x4

∂
∂x7

∂
∂x6

− ∂
∂x5

∂
∂x0
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∂x3
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− ∂
∂x1

∂
∂x5

− ∂
∂x6

∂
∂x7

∂
∂x4

− ∂
∂x3

∂
∂x0

∂
∂x1

− ∂
∂x2

∂
∂x6

∂
∂x5

− ∂
∂x4

∂
∂x7

∂
∂x2

− ∂
∂x1

∂
∂x0

− ∂
∂x3

∂
∂x7

− ∂
∂x4

− ∂
∂x5

− ∂
∂x6

∂
∂x1

∂
∂x2

∂
∂x3

∂
∂x0



F = 0,

where F = [f0, . . . , f7]
T is the unknown column vector-function. It can also be rewritten as a

matrix equation
7∑

j=0

Aj
∂F

∂xj
= 0.

Here A0 is the identity matrix of order 8 and the other seven 8 × 8 antisymmetric matrices
A1 −A7 are given by

A1 =



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0



A2 =



0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0



A3 =



0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


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A4 =



0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0



A5 =



0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0



A6 =



0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0



A7 =



0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0


.

It should be mentioned that det(A0) = · · · = det(A7) = 1. The octonion multiplication table
can be written in various ways, for example, the table in [3, p. 150] is different from one in
[4]. These different tables result in different systems (1.1), though all these systems are clearly
equivalent. Solutions of the system [f ]D = 0 are called right-monogenic functions; functions,
which are both left- and right-monogenic, are called monogenic. Hereafter, we always discuss the
left-monogenic functions, but the proofs go word-by-word for the right- and monogenic functions.

Systems (1.1), where each component fj , 0 ≤ j ≤ 7, is harmonic, are called the
generalized Cauchy-Riemann systems (GCR) - see Stein and Weiss [15, pp. 260-262]. Systems∑7

j=0Aj
∂F
∂xj

+ BF = 0, where B is also a constant matrix, were considered by Evgrafov [8].

Stein and Weiss have proved that for any GCR system there exists a non-egative index p0 < 1
such that |F |p is a subharmonic function for all p ≥ p0. It is known (ibid, p. 262) that for the
M. Riesz system in Rn

∂u1
∂x1

+ · · ·+ ∂un
∂xn

= 0,
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∂ui
∂xj

=
∂uj
∂xi

, i, j = 1, . . . , n, i ̸= j,

the exact value of p0 is (n − 2)/(n − 1). Earlier we proved in [10] that the same is valid for
system (1.1) in R8, that is for system (1.1)

p0 =
n− 2

n− 1

∣∣∣∣
n=8

= 6/7.

In this note we use the subharmonicity of powers of octonion-valued monogenic functions to
prove for those functions an analog of M. Riesz theorem on the boundedness of the conjugation
operator in Lp, p > 1. It should be noted that due to the positivity of the subharmonic function
|f(x)|p, p ≥ 6/7, if f is integrable over the boundary of the domain, then f and all its harmonic
components fi, i = 0, 1, . . . , 7, have non-tangential boundary values almost everywhere on the
boundary. We let B denote the unit ball and S = ∂B, and dσ denote surface measure on S. We
will let fv(x) =

∑7
1=1 fi(x)ei denote the imarginary or vector part of f .

Theorem 1 If f is monogenic in the unit ball B and S = ∂B, then for 0 ≤ r < 1∫
S
|f(rζ)|pdσ ≤ Cp

∫
S
|fv(rζ)|pdσ (1.2)

where

Cp =
( 8

p− 1

)1/p
for 1 < p ≤ 2

Cp =
Ap/2 − (1− λ)p

|λ|p
for 2 < p < ∞

(1.3)

A ≥ 8p(p− 1) and 0 < |λ| ≤ min{1, 1
32(p−2)}

2. Octonionic version of M. Riesz theorem; the proof of Theorem 1.

Let f(x) =
7∑

j=0

ui(x)ej be a monogenic octonion-valued function, fv(x) = f(x) − u0(x)e0 its

imaginary part, and fλ(x) = λu0(x) + fv(x)

Lemma 2.1 The function g = A|fv|p − |f |p is subharmonic for 1 < p ≤ 2 and A ≥ 8
p−1 .

Proof: We first assume fv(x) ̸= 0 and we show that ∆g ≥ 0. Letting J(f) denote the Jacobian
of f(x), the following follows from (1.1):

|∇(u0)|2 ≤ 7|J(fv)|2

8|∇(u0)|2 ≤ 7|J(f)|2

|J(f)|2 ≤ 8|J(fv)|2
(2.1)

We will use a well known formula to calculate the laplacian, the following:

∆|f |p = p|f |p−4[|f2||J(f)|2 + (p− 2)

7∑
j=0

(f · fxj )
2.] (2.2)

Since p ≤ 2, from equation (2.2) we immediately have

∆|f |p ≤ p|f |p−2|J(f)|2
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Applying the Schwartz inequality to (2.2) gives

∆|fv|p ≥ p(p− 1)|fv|p−2|J(fv)|2

Using these inequalities with (2.1), p− 2 ≤ 0, and |f |p−2 ≤ |fv|p−2 gives

∆g ≥ Ap(p− 1)|fv|p|J(fv)|2 − p|f |p−2|J(f)|2

≥ p|f |p−2[A(p− 1)|J(fv)|2 − |J(f)|2]

≥ p|f |p−2|J(f)|2
[A
8
(p− 1)− 1

]
≥ 0

The set of zero points of a harmonic function is a polar set, which completes the proof for all x.
In the proof of the next lemma we will need two identities.

∆(hg) = fh∆g + g∆h+ 2(∇g · ∇h)

∇|f |p = p|f |p−2 < f · fx0 , f · fx1 , ..., f · fx7 >= p|f |p−2(f · J(f)).
(2.3)

Lemma 2.2 Let h = A|fv|2|fλ|p−2 − |fλ|p. Then h is subharmonic if

p ≥ 2

A ≥ 8p(p− 1)

|λ| ≤ min
{
1,

1

32(p− 2)

} (2.4)

Proof: We assume that f ̸= 0 and fv ̸= 0, and use (2.2) to calculate ∆h.

∆h = 2A|fλ|p−2|J(fv)|2

+A(p− 2)|fv|2|fλ|p−6(p− 4)

7∑
j=0

(fλ · fλxj)2

+A(p− 2)|fv|2|fλ|p−4|J(fλ)|2

+ 4A(p− 2)|fλ|p−4
7∑

j=0

(fv · fvxj
)(fλ · fλxj

)

−∆|fλ|p

(2.5)

Multiplying through by |fλ|2−p, and using |fv| ≤ |fλ| ≤ |f | and using |λ||fλxj
|| ≤ |fλxj

| ≤
|fxj |, we obtain

|fλ|2−p∆h ≥ 2A|J(fv)|2

− 4A(p− 2)|fλ|−2
7∑

j=0

(fv · fvxj
)2

+ 4A(p− 2)|fλ|−2
7∑

j=0

(fv · fvxj
)(fλ · fλxj

)

− |fλ|2−p∆|fλ|p.
≥ 2A|J(fv)|2

+ 4A(p− 2)|fλ|−2
7∑

j=0

(fλ · fλxj
)[(fv · fvxj

)− (fλ · fλxj
)]

− |fλ|2−p∆|fλ|p.

(2.6)
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Observing that

(fv · fvxj
)− (fλ · fλxj

) = −λ2u0

{∂uo
∂xj

}
we have

|fλ|−2|(fλ · fλxj
)||[(fv · fvxj

)− (fλ · fλxj
)]|

≤ |λu0|
|fλ|

|fλxj
||λ|

∣∣{∂uo
∂xj

}∣∣
≤ |fλxj

|2|λ|
≤ |λ||fxj |2

(2.7)

Hence,

|fλ|2−p∆h ≥ 2A|J(fv)|2

− |fλ|2−p∆|fλ|p − 4A|λ|(p− 2)|J(f)|2

= A[|J(fv)|2 − 4|λ|(p− 2)|J(f)|2] + [A|J(fv)|2 − |fλ|2−p∆|fλ|p].

We have
|J(fv)|2 − 4|λ|(p− 2)|J(f)|2 ≥

[
1− 32|λ|(p− 2)

]
|J(fv)|2 ≥ 0

and using (2.7) with the Cauchy-Schartz inequality we have

A|J(fv)|2 − |fλ|2−p∆|fλ|p

≥ A|J(fv)|2 − p(p− 2)|fλ|−2
7∑

j=0

|fλ|2
∣∣∣{∂fλ

∂xj

}∣∣∣2 − p(J(fλ)|2

= A|J(fv)|2 − p(p− 2)|J(fλ)|2 − p|J(fλ)|2

≥
[A
8
− p(p− 1)

]
|J(fλ)|2 ≥ 0

since A ≥ 8p(p − 1). This completes the proof since once again the zero set of a non-constant
harmonic function is a polar set.

We now prove Theorem 1.

Proof: We may assume u0(0) = 0. For 1 < p ≤ 2, letting A = 8
p−1 in Lemma 1, we have

g(0) =
8

p− 1
|fv(0)|p − |f(0)|p = 9− p

p− 1
|f(0)|p ≥ 0

Hence, by subharmonicity ∫
S

(
g(rζ)

)
dσ(ζ) ≥ 0

so ∫
S
|f(rζ)|pdσ ≤

( 8

p− 1

)1/p
∫
S
|fv(rζ)|pdσ, 0 ≤ r < 1

For 2 < p < ∞ we again assume u0(0) = 0 so h(x) is subharmonic and A and |λ| satisfying
the conditions of Lemma 2. Since h(0) ≥ 0, so it follows that∫

S
|fλ(rζ)|pdσ(ζ) ≤

∫
S
|fv(rζ)|2|fλ(rζ)|p−2dσ(ζ).
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We now use the Hölder inequality with exponents p/2 and p/(p− 2) and we have∫
S
|fλ(rζ)|pdσ(ζ) ≤ A

(∫
S
|fv(rζ)|pdσ(ζ)

) 2
p
(∫

S
|fλ(rζ)|pdσ(ζ)

) p−2
p

Dividing both sides by
( ∫

S |fλ(rζ)|pdσ(ζ)
) p−2

p
we have∫

S
|fλ(rζ)|pdσ(ζ) ≤ Ap/2

∫
S
|fv(rζ)|pdσ(ζ)

We use the inequality (a+ b)2/p ≥ a2/p + b2/p to fλ = (1− λ)fv + λf and octonion algebra,

x =
7∑

j=0

xjej

x∗ = x0e0 −
7∑

j=1

xjej

xx∗ =
7∑

j=0

|xj |2

From this it follows that f∗
v = −fv and f∗ = u0e0 − fv so |fλ|2 = |(1 − λ)fv + λf |2 =

(1− λ)2|fv|2 + λ2|f |2 and we have—

Ap/2

∫
S
|fv(rζ)|pdσ(ζ) ≥

∫
S
|fλ|pdσ

=

∫
S
|fλ|pdσ =

∫
S
|(1− λ)fv + λf |pdσ

=

∫
S

(
(1− λ)2|fv|2 + λ2|f |2

)p/2
dσ

≥ (1− λ)p
∫
S
|fv|pdσ + |λ|p

∫
S
|f |pdσ

Finally, ∫
S
|f(rζ)|pdσ(ζ) ≤ Ap/2 − (1− λ)p

|λ|p

∫
S
|fv(rζ)|pdσ(ζ)

which completes the proof.
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[11] Kheyfits A 2007 Phragmén-Lindelöf principle for Clifford monogenic functions Proc. of the 15th International
Conference on Finite or Infinite-Dimensional Complex Analysis and Applications (Osaka: Osaka City
Univ.) p 237
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