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Abstract.
We show the first unified description of some of the oldest known geometries such as the Pappus’

theorem with more modern ones like Desargues’ theorem, Monge’s theorem and Ceva’s theorem, through
octonions, the highest normed division algebra in eight dimensions. We also show important applications in
hadronic physics, giving a full description of the algebra of color applicable to quark physics, and comment
on further applications.

1. Introduction
In mid sixties Miyazawa, in a series of papers[1], extended the SU(6) group to the supergroup

SU(6/21) that could be generated by constituent quarks and diquarks that could be transformed to
each other. In particular, he found the following: (a) A general definition of SU(m/n) superalgebras,
expressing the symmetry between m bosons and n fermions, with Grassman-valued parameters. (b) A
derivation of the super-Jacobi identity. (c) The relation of the baryon mass splitting to the meson mass
splitting through the new mass formulae.

This work contained the first classification of superalgebras (later rediscovered by mathematicians in
the seventies). Because of the field-theoretic prejudice against SU(6), Miyazawa’s work was generally
ignored. Supersymmetry was, of course, rediscovered in the seventies within the dual resonance model
by Ramond[2], and Neveu and Schwarz[3]. Golfand and Likhtman[4], and independently Volkov and
Akulov[5], proposed the extension of the Poincaré group to the super-Poincaré group. Examples of
supersymmetric field theories were given and the general method based on the super-Poincaré group was
discovered by Wess and Zumino[6]. The super-Poincaré group allowed transformations between fields
associated with different spins 0, 1

2 and 1. The Coleman-Mandula theorem was amended in 1975 by
Haag, Lopuszanski and Sohnius to allow super-Poincaré e group ×Gint as the maximum symmetry of
the S-matrix. Unfortunately, SU(6) symmetry was still forbidden.
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2. SU(6) and Hadronic Supersymmetry
How do we interpret the symmetries of the QCD spectrum in this light? In the ultraviolet, the running
coupling constant tends to zero and quarks behave like free point particles. Thus an approximate
conformal symmetry exists, allowing spin to be conserved separately from orbital angular momentum.
Thus spin behaves as an internal quantum number; this makes a SU(6) symmetry possible, since the
quarks are almost free Dirac particles. Single vector-gluon exchange breaks this symmetry; thus, as
shown by Glashow, Georgi and deRujula[7], the mass-degeneracy of hadrons of different spins is lifted
by a hyperfine-interaction term.

Here is the main point. In the infrared we expect confinement to set in. The quark-antiquark
potential becomes proportional to the distance. Careful studies of quarkonium spectra and lattice-gauge
calculations show that at large separation the quark forces become spin-independent. QCD is also flavor
independent. We therefore find approximate spin- and flavor-independent quark binding forces; these
are completely consistent with SU(6) symmetry. This is not an exact symmetry, but is a good starting
point, before spin and flavor effects are included.

There is good phenomenological evidence that in a rotationally excited baryon a quark-diquark
(q − D) structure is favored over a three-quark (qqq) structure[8],[9],[10]. Eguchi[11] had shown that
it is energetically favorable for the three quarks in a baryon to form a linear structure with a quark on
one end and bilocal structure qq at the other end. Similarly, Bars and Hanson[12], and independently
Johnson and Thorn[13] had shown that the string-like hadrons may be pictured as vortices of color flux
lines which terminate on concentration of color at the end points. A baryon with three valence quarks
would be arranged as a linear chain of molecule where the largest angular momentum for a state of a
given mass is expected when two quarks are at one end, and the third is at the other: At large spin, two
of the quarks form a diquark at one end of the string, the remaining quark being at the other. Regge
trajectories for mesons and baryons are closely parallel; both have a slope of about 0.9(GeV )−2. If
the quarks are light, the underlying quark-diquark symmetry leads to a Miyazawa symmetry between
mesons and baryons. Thus we studied QCD with a weakly broken supergroup SU(6/21). Note that the
fundamental theory is not supersymmetric. For quarks, the generators of the Poincaré group and those
of the color group SU(3)c commute. It is only the effective Hamiltonian which exhibits an approximate
supersymmetry among the bound states qq̄ and qD.

Under the color group SU(3)c, meson qq̄ and diquark (D = qq) states transform as[10],[14]

qq : 3× 3 = 3̄ + 6 ; qq̄ : 3× 3̄ = 1 + 8 (1)

and under the spin flavor SU(6) they transform as

qq : 6× 6 = 15 + 21 ; qq̄ : 6× 6̄ = 1 + 35 (2)

Dimensions of internal degrees of quarks and diquarks are shown in the following table:

SUf (3) SUs(2) dim.

q � s = 1/2 3× 2 = 6

D

� �

�
�

s = 1

s = 0

6× 3 = 18

3× 1 = 3

For a more general case of the above table we refer the reader to the table with the flavor-spin content at
the end of the paper.

If one writes qqq as qD, then the quantum numbers of D are 3̄ for color since when combined with
q must give a color singlet, and 21 for spin-flavor since combined with color must give antisymmetric
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wavefunctions. The quantum numbers for q̄ are for color, 3̄, and for spin-flavor, 6̄. Thus q̄ and D have
the same quantum numbers (color forces can not distinguish between q̄ and D). Therefore there is a
dynamic supersymmetry in hadrons with supersymmetric partners

ψ =

(
q̄
D

)
, ψ̄ = (q D̄) (3)

We can obtain all hadrons by combining ψ and ψ̄: mesons are qq̄, baryons are qD, and exotics areDD̄
states. Inside rotationally excited baryons, QCD leads to the formation of diquarks well separated from
the remaining quark. At this separation the scalar, spin-independent, confining part of the effective QCD
potential is dominant. Since QCD forces are also flavor-independent, the force between the quark q and
the diquark D inside an excited baryon is essentially the same as the one between q and the antiquark q̄
inside an excited meson. Thus the approximate spin-flavor independence of hadronic physics expressed
by SU(6) symmetry is extended to SU(6/21) supersymmetry[10],[14] through a symmetry between q̄
and D, resulting in parallelism of mesonic and baryonic Regge trajectories.

3. Color Algebra and Octonions
We shall now give an algebraic justification to our remarks above. We will find all the answers in an
algebra we build in terms of octonions and their split basis. The exact, unbroken color group SU(3)c is
the backbone of the strong interaction. It is worthwhile to understand its role in the diquark picture more
clearly.

In what follows we first give a simple description of octonion algebra (also known as Cayley algebra).
Later we’ll show how to build split octonion algebra that will close into a fermionic Heisenberg algebra.
Split octonion algebra will then be shown to produce algebra of color forces in QCD in application to
hadronic supersymmetry when the split units and their conjugates become associated with quark and
antiquark fields, respectively.

An octonion x is a set of eight real numbers

x = (x0, x1, . . . , x7) = x0e0 + x1e1 + . . .+ x7e7 (4)

that are added like vectors and multiplied according to the rules

e0 = 1, e0ei = eie0 = ei, i = 0, 1, . . . , 7 (5)

eαeβ = −δαβ + εαβγeγ . α, β, γ = 1, 2, . . . , 7 (6)

where e0 is the multiplicative unit element and eα’s are the imaginary octonion units. The structure
constants εαβγ are completely antisymmetric and take the value 1 for combinations

εαβγ = (165), (257), (312), (471), (543), (624), (736) (7)

Note that summation convention is used for repeated indices.
The octonion algebra C is an algebra defined over the field Q of rational numbers, which as a vector

space over Q has dimension 8.
We shall now give reasons for incorporation of the octonion algebra for hadronic physics, showing

only they through their split octonionic parts one can provide the correct description of the color algebra
in hadrons. Later in another publication we shall show[15] a previously unknown multiplication rules for
octonions by producing a wheel that allows generalized multiplication rules for doublets and triplets of
octonionic units.

First, the reasons: Two of the colored quarks in the baryon combine into an anti-triplet
3× 3 = 3̄ + (6), and in a nucleon 3× 3̄ = 1 + (8). The (6) partner of the diquark and the (8) partner
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of the nucleon do not exist. In hadron dynamics the only color combinations to consider are 3× 3→ 3̄
and 3̄× 3→ 1. These relations imply the existence of split octonion units ui defined below through a
representation of the Grassmann algebra {ui, uj} = 0, i = 1, 2, 3. What is a bit strange is that operators
ui, unlike ordinary fermionic operators, are not associative. We also have 1

2 [ui, uj ] = εijk u
∗
k. The Jacobi

identity does not hold since [ui, [uj , uk]] = −ie7 6= 0, where e7, anticommute with ui and u∗i .
The behavior of various states under the color group are best seen if we use split octonion units

defined by[16]

u0 =
1

2
(1 + ie7), u∗0 =

1

2
(1− ie7) (8)

uj =
1

2
(ej + iej+3), u∗j =

1

2
(ej − iej+3), j = 1, 2, 3 (9)

The automorphism group of the octonion algebra is the 14-parameter exceptional group G2. The
imaginary octonion units eα(α = 1, ..., 7) fall into its 7-dimensional representation.

Under the SU(3)c subgroup of G2 that leaves e7 invariant, u0 and u∗0 are singlets, while uj and u∗j
correspond, respectively, to the representations 3 and 3̄. The multiplication table can now be written in
a manifestly SU(3)c invariant manner (together with the complex conjugate equations):

u20 = u0, u0u
∗
0 = 0 (10)

u0uj = uju
∗
0 = uj , u∗0uj = uju0 = 0 (11)

uiuj = −ujui = εijku
∗
k (12)

uiu
∗
j = −δiju0 (13)

where εijk is completely antisymmetric with εijk = 1 for ijk = 123, 246, 435, 651, 572, 714, 367; and
zero otherwise. Here, one sees the virtue of octonion multiplication. If we consider the direct products

C : 3⊗ 3̄ = 1 + 8 (14)

G : 3⊗ 3 = 3̄ + 6 (15)

for SU(3)c, then these equations show that octonion multiplication gets rid of 8 in 3 ⊗ 3̄, while it gets
rid of 6 in 3⊗ 3. Combining Eq.(12) and Eq.(13) we find

(uiuj)uk = −εijku∗0 (16)

Thus the octonion product leaves only the color part in 3 ⊗ 3̄ and 3 ⊗ 3 ⊗ 3, so that it is a natural
algebra for colored quarks.

For convenience we now produce the following multiplication table for the split octonion units:

u0 u∗0 uk u∗k
u0 u0 0 uk 0
u∗0 0 u∗0 0 u∗k
uj 0 uj εjkiu

∗
i −δjku0

u∗j u∗j 0 −δjku∗0 εjkiui
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It is worth noting that ui and u∗j behave like fermionic annihilation and creation operators:

{ui, uj} = {u∗i , u∗j} = 0, {ui, u∗k} = −δik (17)

For more recent reviews on octonions and nonassociative algebras we refer to papers by Okubo[17],
Baez[18] and Catto[19].

What we would like to discuss now is a recent unpublished, taking the usual octonionic multiplication
rules from doublets of octonions to triplets.

The usual octonion multiplication once sees in literature is a diagram (as shown by, for example, in
Baez’s paper[18]). That triangle was replaced by Gürsey and Günaydin. We extended and generalized
their work by adding the dashed lines shown below in Figure 1. In Double and Triple Octonionic
Multiplication table as shown, we describe the rotation of triangle and dashed lines for all octonionic
multiplications. We also show by moving to the left instead of the right, we build a completely
new multiplication table for doublets and triplets in the Left Handed Double and Triple Octonionic
Multiplication and Figure 2. There is a complete correspondence between those diagrams and figures
which will be explained in another publication.

We can now show how one can map some of the old and new geometries into each other.
In the well-known Papus’ geometry, one can put the e’s into a diagram and show how a center line

can be mapped into two arbitrary lines outside, above and below as shown Figure 3. One can perform
six more distinct copies of these mappings.

In a similar way, one can see all these mappings into the Desargues’ theorem in a beautiful generalized
way. One can show that these pictures can be generated in two and three dimensions. These will also be
published in another publication.

Finally, we want to mention that these mappings described above can be extended into Monge’s and
Ceva’s theorems as shown in the Figures 4 and 5. These have tremendous applications not only in
hadronic physics, but also in solutions of problems in astrophysics.
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Figure 1.
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Figure 2.
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Figure 3.

Figure 4.

Figure 5.
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Table: Flavor-Spin Content for three quark and quark-diquark baryons

Configuration SUc(3) SUf (3) SUs(2)

q � ≡ 3 � ≡ 3 S = 1/2

D ≡ q2
�
� ≡ 3̄





�� ≡ 6

�
� ≡ 3̄

{
S = 0 not allowed
S = 1

{
S = 0
S = 1 not allowed

q3
�
�
�

≡ 1





��� ≡ 10

�� ≡ 8
�

S = 3/2

S = 1/2

q −D
�
�
�

≡ 1





3 × 3̄





�� ≡ 8
�

�
�
�

≡ 1

3 × 6





��� ≡ 10

��� ≡ 10

�� ≡ 8
�

�� ≡ 8
�

S = 1/2

S = 1/2

S = 1/2

S = 3/2

S = 1/2

S = 3/2
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