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Abstract. Let M be an 8-manifold and E be an SO(8) bundle on M . In a previous paper [F.
Ozdemir and A.H. Bilge, “Self-duality in dimensions 2n > 4: equivalence of various definitions
and the derivation of the octonionic instanton solution”, ARI (1999) 51:247-253], we have shown
that if the second Pontrjagin number p2 of the bundle E is minimal, then the components of the
curvature 2-form matrix F with respect to a local orthonormal frame are Fij = cijωij , where
cij ’s are certain functions and the ωij ’s are strong self-dual 2-forms such that for all distinct
i, j, k, l, the products ωijωjk are self dual and ωijωkl are anti self-dual. We prove that if
the cij ’s are equal to each other and the manifold M is conformally flat, then the octonionic
instanton solution given in [B.Grossman, T.W.Kephart, J.D.Stasheff, Commun. Math. Phys.,
96, 431-437, (1984)] is unique in this class

1. Introduction
The set-up for gauge theory is based on vector bundles over differentiable manifolds [1]. Let
M be a differentiable manifold with a Riemannian connection and E be a vector bundle on M
with a structure group G. Let g be the Lie algebra of G. The connection on the vector bundle
is defined locally by a g valued connection 1-form A. If F is the curvature of this connection,
then the invariant polynomials of F are local representatives of the characteristic classes of the
bundle E. Action integrals are given in terms of the inner products of the components of the
curvature of the bundle; these integrals are bounded below by the integrals of the characteristic
classes of vector bundles. Solutions for which the action integrals reach these topological lower
bounds are minimizers of the action integrals. In our approach, we start with a topological
lower bound and we use algebraic methods to characterize those solutions that saturate various
inequalities among exterior products and inner products of forms. This procedure results in an
action with the topological lower bound we started with.

We use the notion of “Strong self-duality” of a 2-form ω in even dimensions. These are
building blocks for the solutions that saturate various inequalities. In this approach, we identify
2-forms and skew-symmetric matrices. A form is called “strong self-dual”, if the minimal
polynomial of the corresponding skew-symmetric matrix A is A2 + λ2I = 0 [2]. Equivalently, in
4n dimensions, ωn is Hodge self-dual and in 2n dimensions, ωn = k ∗ ω [3].

The octonionic instanton solution [4] is the minimizer of the the action
∫
M |F 2, F 2|dvol on S8.

In [3], we have derived this solution by the maximality of (minus) the second Pontrjagin class
by the procedure described above. In the present work, we show that the octonionic instanton
solution is unique in the class on solutions on conformally flat 8-manifolds that admit an SO(8)
vector bundle with an action that maximize −p2.
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2. Preliminaries
The base manifold M is a Riemannian manifold, equipped with a torsion free metric connection
B. Local sections of the cotangent bundle are denoted as {ei}. The connection is given by

dei =
∑

Bij ∧ ej

where Bij = −Bji are 1-forms. The curvature of the manifold is given by R = dB −B ∧B.
The vector bundle E is an n-plane bundle on M . Local sections of E are denoted as si. The

connection on E is given by

dsi =
∑

Aijsj

where Aij ’s are 1-forms; A takes vales in the Lie algebra of the structure group of E. The
curvature of E is given by

F = dA−A ∧A

and F satisfies the Bianchi identities

dF + F ∧A−A ∧ F = 0.

Local representatives of the characteristic classes are computed as follows. If si, i = 1, . . . , N
is a basis for local sections of E, then with respect to this basis, F is represented by an N ×N
matrix of 2-forms. As 2-forms belong to a commutative ring, we can compute the determinant

det(F + λI) = λN + σ1λ
N−1 + σ2λ

N−2 + · · ·+ σN−1λ+ σN

The σi’s are 2i forms that are proportional to the representatives of the Chern or Pontrjagin
classes of E. If E is real, the odd ones, c2k+1 are trivial, only the even ones, c2k ∼ pk are
nontrivial. The Euler Class is the square root of the determinant of F . Actions that involve
the curvature F can be related to Pontrjagin numbers by relating inner products and exterior
products.

In our approach, we start with a characteristic class say p1 on a 4-dimensional manifold or
a combination of p2 and p21 on an 8-dimensional manifold. We use conditions for the saturation
of various inequalities to obtain an upper bound for the integrals of the characteristic classes
as algebraic equations for the curvature. Then we try to solve for a connection that gives the
curvature 2-form we determined by algebraic requirements. The solvability of this connection
usually impose conditions on the base manifold hence it may determine the background metric.
We will construct the action by maximizing −p2 on conformally flat 8-manifolds by relating
⟨F 2, F 2⟩ and traceF 4. Actually, it will turn out that traceF 2 = 0, hence traceF 4 is proportional
to the second Pontrjagin class.

3. Strong Self-Dual 2-forms
In 4-dimensions, 2-forms have a number of nice properties; they live in the middle dimension
hence their Hodge duality is defined; self-dual 2-forms belong to a linear space; when F = ∗F ,
Yang-Mills equations are satisfied and finally the Yang-Mills equations form an elliptic system.

We noticed that the matrix of a self-dual 2-form has minimal polynomial A2 + λ2I = 0, i.e,
its eigenvalues are equal in absolute value. “Strong self-duality of 2-forms” in 2n dimensions is
defined by the equality of the absolute values of the eigenvalues of the matrix of ω with respect
to an orthonormal basis [2] We have also shown that it is equivalent to the self-duality in the
Hodge sense of ωn/2 (used in [4] and to the equality ∗ω = kωn−1 (used by Trautman, in[5].

In 4-dimensions, the Yang-Mills action
∫
⟨F, F ⟩ =

∫
F ∧ ∗F , where F is the curvature 2-form

of an SO(N) bundle, reaches the topological lower bound
∫
F ∧F , provided that F is self-dual.

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012011 doi:10.1088/1742-6596/670/1/012011

2



In 4-dimensions self-dual and antiself-dual 2-forms are eigenspaces of the Hodge map and they
form linear subspaces. In higher dimensions we look for linear subspaces of the set of strong self-
dual 2 forms. In [6], we have shown that the dimension of maximal linear subspaces of strongly
self-dual forms on a 2n manifold is equal to the number of linearly independent vector fields on
S2n−1. In eight dimensions, there are 7 dimensional maximal linear subspaces of strong self-dual
2-forms. We will use these these subspaces to construct the octonionic instanton solution.

4. Strong self-duality and equivalence of various properties.
Let ωij be the components of a 2-form in 2n dimensions with respect to some local orthonormal
basis. We denote the 2-form ω and the skew-symmetric matrix consisting of its components with
respect to some orthonormal basis by the same symbol. We recall the standard inequalities:

(ω, η)2 ≤ (ω, ω)(η, η), 2(ω, η) ≤ (ω, ω) + (η, η).

The invariant polynomials s2i of ω can be expressed in terms of the elementary symmetric
functions of the eigenvalues ±λ2

k’s. The inner products (ωi, ωi) and the s2i’s are related as
follows.

s2 = (ω, ω) = λ2
1 + λ2

2 + · · ·+ λ2
n,

s4 = 1
(2!)2

(ω2, ω2) = λ2
1λ

2
2 + λ2

1λ
2
3 + · · ·+ λ2

n−1λ
2
n,

s6 = 1
(3!)2

(ω3, ω3) = λ2
1λ

2
2λ

2
3 + λ2

1λ
2
2λ

2
4 + · · ·+ λ2

n−2λ
2
n−1λ

2
n,

. . . . . .
s2n = 1

(n!)2
(ωn, ωn) = 1

(n!)2
| ∗ωn |2= λ2

1λ
2
2 . . . λ

2
n

Defining the weighted elementary symmetric polynomials by
(
n
i

)
qi = s2i, one has the inequalities

q1 ≥ q
1/2
2 ≥ q

1/3
3 ≥ · · · ≥ q1/nn , qr−1qr+1 ≤ q2r , 1 ≤ r < n,

and the equalities hold iff all the λk’s are equal [7]. This is a key result and our definition of
strong self-duality,

Definition. Let ω be a 2-form in 2n dimensions, ±iλk, k = 1, . . . , n be its eigenvalues and η
be the the square root of the determinant of ω, with a fixed choice of sign. Then ω is called
strongly self-dual (strongly anti self-dual) if | λ1 |=| λ2 |= · · · =| λn |, and η > 0 (η < 0).

The strong self-duality condition is equivalent to the matrix equation ω2 + λ2I = 0, where I
is the identity matrix, and λ2 = 1

2ntrω
2. This definition gives quadratic equations for the ωij ’s,

hence the strong self-duality condition determines a nonlinear set.
In four dimensions, the matrices satisfying ω2 + λI = 0 consist of the union of the usual

self-dual and anti self-dual forms. In higher dimensions the set S2n is an n2 −n+1 dimensional
submanifold and the dimension of maximal linear submanifolds of S2n is equal to the number
of linearly independent vector fields on S2n−1.

The equivalence of various definitions is given by the following Lemma [3].

Lemma. Let ω be a 2-form in 2n dimensions. Then

(n− 1)(ω, ω)2 − n

2
(ω2, ω2) ≥ 0, (ωn/2, ωn/2) ≥ ∗ωn,

and equality holds if and only if all eigenvalues of ω are equal.

From this Lemma , we immediately have

Corollary. The 2-form ω is strongly self-dual iff ωn/2 is self-dual in the Hodge sense.
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The strong self duality condition is also equivalent to the self-duality definition used by
Trautman.

Proposition. Let ω be a 2-form in 2n dimensions. Then ωn−1 = k ∗ ω where k is a constant,
if and only if ω is strongly self-dual and k = n!

nn/2 (ω, ω)
n
2
−1.

5. Linear subspaces of strongly self-dual forms in eight dimensions.
In eight dimensions,

(ω, ω)2 ≥ 2
3(ω

2, ω2) ≥ 2
3 ∗ ω4

For strongly self-dual 2-forms, these inequalities are saturated and we also have

ω3 = 3
2(ω, ω) ∗ ω.

By applying the equalities above to ω ± η, we obtain

(ω, ω)2 + (η, η)2 + 2(ω, ω)(η, η)
≥ 3

2

[
(ω2, ω2) + (η2, η2)2 + 2(ω2, η2)± 4(ω2 + η2, ωη) + 4(ωη, ωη)

]
≥ 3

2

[
ω4 + η4 + 6ω2η2 ± 4ω3ωη ± 4ωη3

]
)

Using these inequalities we obtain a series of results concerning the products involving
strongly self-dual forms.

If ω is strongly self-dual and (ω, η) = 0. Then ω3η = 0. When ω and η are both strongly
self-dual ω2 = ∗ω2 and η2 = ∗η2, and

2(ω, ω)(η, η) ≥ 3
2

[
2ω2η24(ωη, ωη)

]
≥ 3

2

[
+6ω2η2

]
If ω, η, and ω ± η are strongly self-dual and (ω, η) = 0. Then

(ω, ω)(η, η) = 2(ω2, η2) = 2ω2η2.

Let ω and η be strongly self-dual and (ω, η) = 0. Then

ωη = ∗(ωη)

if and only if ω ± η is strongly self-dual.
Let ω and η, and ω ± η be strongly self-dual and (ω, η) = 0. Then

(ω, ω)(η, η) = 2(ω2, η2) = 2ω2η2.

Let ω, η and α be mutually orthogonal strongly self-dual 2-forms such that ω+ η+ α is also
strongly self-dual. Then

ωηα = 0.

Proposition. Let F =
∑

ωaEa where ωa’s belong to a linear subspace of strongly self-dual
2-forms and Ea’s belong to a basis of the Lie algebra. Then (i) F 2 = ∗F 2 for any Lie algebra,
(ii) ∗F is proportional to kF 3 provided that trE2

aEb is proportional to Eb.
We note that if k above is constant, then the Yang-Mills equations are automatically satisfied,

however this condition means that each ωa has constant norm.
Another important property of strongly self-dual 2-forms is that the multiplication by a

strongly self-dual 2-form is nondegenerate. Let ω be strongly self-dual 2 form and η be any
2-form. Then ωη = 0 implies that η = 0. As a result, the equation ωη = α has a solution
unique solution provided that α is in the image of the multiplication by ω, in other words if the
equation has a solution, this solution is unique.

Using these results we know show that the solution constructed by Grossman is unique.
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6. The Grossman-Kephart-Stasheff solution
In Grossman et.al, F in the form F = f0σij where f0 is a 2 form and the Σij ’s are a basis for
Spin(8). As a result the action ⟨F 2, F 2⟩ is equal to the topological term F 4 as consequence of
the properties of the Σij ’s.

We consider real SO(N) bundles, hence locally F takes values in a skew-symmetric matrix.
It follows that all principal minors of F are skew-symmetric matrices, their determinants are
perfect squares and the σ2i’s are sums of squares of i-fold products of the entries of F . Then, a
local representative of the second Pontrjagin class is given by

−p2 = λσi<j<k<l − ∗(FijFkl − FikFjl + FilFjk)
2,

where λ is a proportionality constant.
In [3] we proved the following theorem.

Theorem Let F be the local curvature 2-form of an 8-plane vector bundle. If the negative of
the second Pontrjagin class, −p2 is maximal, then

i. Each Fij is strong self-dual,

ii. For distinct i, j, k, FijFjk is self-dual,

iii. For distinct i, j, k, l, FijFkl is anti self dual.

The theorem above implies that
Fij = cijωij ,

where cij ’s are functions and ωij ’s are strong self-dual 2-forms. We use the structure of 7-
dimensional linear subspaces to obtain the following set of 2-forms that form a local basis of Λ2

[3].

ω12 = e14 + e23 + e58 + e67
ω13 = e13 − e24 − e57 + e68
ω14 = e16 + e25 − e38 − e47
ω15 = e15 − e26 + e37 − e48
ω16 = e18 + e27 + e36 + e45
ω17 = e17 − e28 − e35 + e46
ω18 = e12 + e34 + e56 + e78
ω23 = e12 + e34 − e56 − e78
ω24 = −e17 − e28 − e35 − e46
ω25 = −e18 + e27 + e36 − e45
ω26 = e15 + e26 − e37 − e48
ω27 = e16 − e25 + e38 − e47
ω28 = −e13 + e24 − e57 + e68
ω34 = −e18 + e27 − e36 + e45
ω35 = e17 + e28 − e35 − e46
ω36 = e16 − e25 − e38 + e47
ω37 = −e15 − e26 − e37 − e48
ω38 = e14 + e23 − e58 − e67
ω45 = e12 − e34 + e56 − e78
ω46 = −e13 − e24 − e57 − e68
ω47 = −e14 + e23 + e58 − e67
ω48 = −e15 + e26 + e37 − e48
ω56 = −e14 + e23 − e58 + e67
ω57 = e13 + e24 − e57 − e68
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ω58 = e16 + e25 + e38 + e47
ω67 = e12 − e34 − e56 + e78
ω68 = −e17 + e28 − e35 + e46
ω78 = e18 + e27 − e36 − e45

The way we number this set is as follows. The ωi8s are the seven 2-forms obtained from
Corrigan’s equations (we could start with any such set)[8]. Then start with for example ω18

and find all the 2-forms that constitute a linear space together with ω18, these will be placed to
the first row and eight column. Actually given one row one can construct the matrix uniquely
from the following requirement: given for example the first row, ω23 has to form a linear space
together both with ω13 and ω12, the structure of these spaces are discussed in [3], looking at
intersections, we determine the matrix completely.

The properties of products of forms belonging to the same linear subspace, as discussed above,
implies that F 3 is proportional to ∗F .

Note that the Bianchi identities are linear in the connection A. Actually, the connection of
the base manifold also come into play in dωij , since

dFij + Fik ∧Akj −Aik ∧ Fkj = dcij ∧ ωij + cijdωij + cikωik ∧Akj − ckjAik ∧ ωkj

We start by the general case, with arbitrary cij . We solve the components of the dcij and the
components of the connection of the manifold from the Bianchi identities. Then, the remaining
components of the Bianchi identities are linear homogeneous equations for the components of
the connection on the bundle. We have shown that, generically, this coefficient matrix of this
homogeneous system is nonsingular, hence the connection of the bundle is trivial. On the other
extreme, if we assume all cij ’s are equal to each other, then the coefficient matrix is identically
zero. It follows that the connection of the base manifold is determined by the connection on the
bundle (or vice versa).

After this stage we assume that the base manifold is conformally flat. This amounts to
assuming that ei = epdxi, hence dei = piei, where pi is the partial derivative of p, in the
direction i. We can incorporate the common multiplicative function in F into the conformal
factor. Finally we use the Coulomb gauge condition, ∇ · A = 0 and we solve F = dA − A ∧ A
for A, in terms of the derivatives of p. The second derivatives of p satisfy pij = 0 for i ̸= j and

pii = −1− 1
2

[
p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28

]
,

fixing the base manifold completely.
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