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Abstract.

This paper propose an extension of Random Domino Automaton by introducing extra
parameter related to a very short-distance interactions between clusters which allows to isolate
influence two mechanisms of clusters grow, namely enlarging and coalescence. In this setting
statistically stationary state under assumption of independence of clusters is investigated and
respective set of equations is derived.

Moreover, a special solvable case is studied in detail and it is shown how to derive Motzkin
numbers out of the automaton for a family of parameters without considering a limit.

1. Introduction

Random Domino Automaton (RDA) [6, 7, 8] is a toy model of earthquakes — an extension of
well known Drossel-Schwabl model of forest fires [10]. RDA is a slowly driven system, and their
rules for accumulation and abrupt release of energy result in various types of frequency-size
distributions of produced avalanches.

Such simple models, as for example [13, 14] are useful for analysis of specific properties of
earthquakes. The Random Domino Automaton may give a possible mechanistic explanation of
an universal earthquake recurrence time distribution [9]. So far, a finite version of RDA [4] was
studied, and preliminary results [5] are promising. To explain the recurrence time distribution,
it is necessary to solve an inverse problem for the model, which is already done for finite version
of RDA [3]. The solution for more realistic cases will be published soon.

Moreover, the RDA model possess a interesting mathematical structure which is fully solvable
for a specific choice of parameters and this choice leads to relation to Motzkin numbers [2]. Here
we discuss the structure of the automaton and propose an extension of RDA in order to obtain
Motzkin numbers for wider family of parameters, without considering a limit, as has been done
originally.

2. The Random Domino Automaton
Random Domino Automaton comes from very simplified view of earthquakes. The space -
one dimensional lattice - corresponds to boundaries of two tectonic plates moving with relative
constant velocity. Due to irregularities of materials, relative motion can be locked at some places
producing stress accumulation. Beyond some threshold of the stress, a relaxation takes place.
A size of the relaxation depends on the nearby accumulated stress.

Energy in the automaton is represented by balls added to the randomly chosen cell (each
one is equally possible) with a constant rate - one ball in one time step. If the chosen cell is
empty, it becomes occupied with probability v or the ball is scattered with probability (1 — v).
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If the chosen place is already occupied, there are also two possibilities: the ball is scattered with
probability (1 — p) or with probability p the incoming ball triggers a relaxation, i.e. balls from
the chosen cell and all adjacent occupied cells are removed. An example of relaxation of size
four is presented in the diagram below. The up most line contains also probability of occupation
of respective empty cells.

v Vv Vv i v
time = ¢ ol fel Pl Telelefef [ofef-
time = ¢ +1 S R R R R N R KR

The stationary state of the system (it exists, see [4]) may be described by the distribution of
clusters. The number of clusters of the length ¢, for i« = 1,2,..., is denoted by n;; the number
of empty clusters of length 1 is denoted by ny. Then the number of all clusters n and and the

density p are
1 .
1>1 i>1

The following set of equations for RDA is derived [7]
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The balance equation for the total number of clusters n and for the density p reads

(1-p)N—-20=3" '%nz (6)
i>1
(1-p)N = %nﬂQ (7)
i>1

The linear term on the righ hand side of equation (4), i.e. the term containing n;_; stems
from enlarging of a cluster of the size i — 1 to the size i, like, for example, presented below.
il
NIRRT
—_——
i—1

The nonlinear (quadratic in n;) term of equation (4) results from merging of two clusters: one
of size k € {1,2,...,(i — 2)} and the second of the size ((i — 1) — k), like presented below.
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The equations above are derived under the assumption of the independence for the order of
clusters. In other words, we neglect correlations.

Now we consider a case u = p; = 0/i, which is related to equal probability of triggering
relaxation for each cluster. For pu; = g, where § = const, the balance for p takes the following
form

1
= 8
P =0T D (8)
where 6 = g, which relates the density with the ratio of coefficients § and v only. Since

6 € (0,00), any density p € (0,1) may be realized. The balance for n is reduced to
(1 = p)N = (2 + 0)n. Together with the balance equation for p it gives

0
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We define new variables ¢; for i =0,1,..., by

C; = Wn“_l’ (10)

where 2 (2941 O+ 1)(0+2)
216 <29+3> b= "Nopor1) - (11)

Then, the set of equations for n; can be rewritten in the form

m

Cm42 = Cmt1 + Z CkCm—Fk; (12)
k=0

which is valid for m > 0 (m =i — 2) and initial data ¢y and ¢; are

1+ 30462

(1+26)2 (13)

Cop = C1 =

The above recurrence generate Motzkin numbers [1], if it starts with ¢g = ¢; = 1. Thus, to
obtain Motzkin numbers it is necessary to consider a limit § — 0, while N is constant [2].
The generating function formalism gives explicit solution for any value of 8, namely for m > 0

given by
i (2c0 — 1) 20m —j)+1\ [m —j+2 (14)
= m—j+2)2m 33\ m—j+1 J

3. An extension of Random Domino Automaton

Now we propose generalisation of RDA to interacting RDA (iRDA), namely we introduce a
parameter ”¢” controlling efficiency of some sort of short range interaction. In the evolution rule
we change occupation rule for empty cell as follows.

e If the chosen cell is empty and two adjacent cells are occupied, it becomes occupied with
probability ¢ or the ball is scattered with probability (1 — ¢) leaving the state of the
automaton unchanged.

e If the chosen cell is empty and at least one adjacent cell is also empty, it becomes occupied
with probability v or the ball is scattered with probability (1 — v).
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All the other rules remain valid.
In the new setting an example of relaxation of size four looks as in the diagram below. Like
previously, the upmost line present probability of occupation of respective empty cells.
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The set of equations for iRDA is in the form remarkably similar to the original set for RDA.
It is of the form

n = ! (1—p)N —2n+n?), (15)
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for i > 3, where { = £ € [0, 00) and

2
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The balance equation for the total number of clusters n and for the density p reads

(L=p)N =2n— (- Dnf = Y Enii (19)
i>1
(1—p)N + (& —1)nd = %sz (20)
i>1

Naturally, the above equations for £ = 1 reproduce former RDA equations.

The balance equations (20) and (19) (as well as equations for higher weighted moments of n;
defined below) can be also obtained from the above set (15)-(17). For n;, i = 1,2, ..., we define
a moment of order v and a weighted moment m., of order v by

1 ) N 1 ny
my = N Zniﬂ, My = N Z %niﬂ. (21)
i>1 i>1
Then, one obtains
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4. Special case: y = §/i, where 6 = constant
In the case which refers to equal probability of triggering avalanche for each cluster, the
parameters are fixed as follows: v = const and p = %, where § = const and 8 = 2. Equations

(20) and (19) give '

n 2(-1) >
= 14— ) 23
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where 6 = 2 € (0,00). Hence
0
= 1 _——
P 0+1+K (25)
NO
n = 2(5_1) ’ <26)
@+1+K) (9+2+ 2(9+1)+£)
where

_ 26 -1)
K_(2+9)(2(0+1)+£)+2(§f1)' (27)

Together with simple form of

2n
0
=— 28
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it allows to reduce the set of equations (15)-(17) to the following recurrence:
1 2
ny = T <9 + ) n, (29)
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for i > 2 and where n is an explicit function of 6 and £ given by formula (26).
We define new variables ¢; for i = 0,1,..., by
Ci = it (32)
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Then, the equation (31) can be rewritten in the form of Motzkin numbers recurrence (12). Initial
data ¢y and ¢; are easily obtained from equations (29)-(30), when it is transformed according
the rule of equation (32), namely

E+(1+5)0+ 62
(&4 20)2

Co = C = (35)

Contrary to the previous case, equations (35) allow to obtain value 1 without considering a
limit. Condition ¢y = ¢; =1 is fulfiled for a family of parameters satisfying

£ 3 ¢

o= 235

or 6=0. (36)

Thus for £ € (4,6) and respective value of §# iRDA corresponds exactly to the Motzkin numbers.
For iRDA, a solution of the recurrence (12) is given by formula (14) but with ¢y = ¢; given by
equations (35). Together with the formula (32), it gives explicit solution of equations (15)-(17)
for the distribution n;s for any value of 6.

5. Conclusions

We have proposed an extension of Random Domino Automaton by introducing extra parameter
related to very short distance interactions between clusters. Investigating statistically stationary
state under assumption of independence of clusters, we have derived respective set of equations
for clusters size distribution as well as balance equations for density and the total number of
clusters.

We have also shown how to derive Motzkin Numbers out of the Automaton for a family of
parameters without considering a limit.

By adjusting a value of the parameter related to very short distance interactions between
clusters it is possible to separate of influence of two mechanisms of clusters grow. Thus it is
straightforward to deduce other results presented in [7] accordingly and all the relations to other
disciplines mentioned there are still applicable.

We point out that considering of hierarchical clustering in the spirit of [11] based on Random
Domino Automaton, and in particular relation to branching numbers would be of interest and
we intend to investigate this topic in future.
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