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Abstract. We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent
bundles over all the compact and non-compact Hermitian symmetric spaces. In order to
construct them we use the projective superspace formalism which is an N = 2 off-shell superfield
formulation in four-dimensional space-time. This formalism allows us to obtain the explicit
expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any
Hermitian symmetric spaces in terms of the N = 1 superfields, once the Kähler potentials of
the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma
models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric
models by using the projective superspace formalism and derive the general formula for the
cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We
apply to the formula for the non-compact Hermitian symmetric space E7/E6 × U(1)1.

1. Introduction

Supersymmetry (SUSY) has an intimate relation to complex geometry in mathematics. Indeed,
it is well known that target spaces of N = 1 and N = 2 SUSY nonlinear sigma models (NLSMs)
must be Kähler [1] and hyperkähler manifolds [2], respectively. It is important to construct
these manifolds because they frequently appear in field theories with/without supersymmetry,
supergravity and superstring theories.

Recently there have been developments to construct N = 2 SUSY NLSMs in the projective
superspace formalism [3, 4, 5, 6, 7], which is an N = 2 off-shell superfield formulation in
four-dimensional space-time. In this formalism, N = 2 SUSY NLSMs on cotangent bundles
over Kähler manifolds have been constructed [8, 9, 10, 11, 12, 13, 14]. A key observation in
the developments is that once a certain N = 1 SUSY NLSM is obtained, this model can be
extended into the N = 2 SUSY NLSM with use of the projective superspace formalism. In
other words, if we have the N = 1 SUSY NLSM on the Kähler manifold, we can obtain N = 2
SUSY NLSM on the cotangent bundle over the Kähler manifold. The target space of the
N = 2 SUSY NLSM is shown to be an open domain of the zero section of the cotangent bundle
[8, 9]. Namely it is hyperkähler. Based on the observation in [8, 9], the N = 2 SUSY NLSMs
on the cotangent bundles over the irreducible Hermitian symmetric spaces (HSSs) except the

1 This talk is based on [16].
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classical type exceptional type

compact type U(n+m)
U(n)×U(m)

SO(2n)
U(n)

Sp(n)
U(n)

SO(n+2)
SO(n)×U(1)

E6
SO(10)×U(1)

E7
E6×U(1)

non-compact type U(n,m)
U(n)×U(m)

SO∗(2n)
U(n)

Sp(n,R)
U(n)

SO0(n,2)
SO(n)×U(1)

E6(−14)

SO(10)×U(1)

E7(−25)

E6×U(1)

Table 1. Irreducible Hermitian symmetric spaces

non-compact exceptional types of them have been constructed [8, 9, 10, 11, 12, 13, 14]. The
irreducible HSSs classified by Cartan [15] consist of compact type and non-compact type. They
are summarized in Table 1.

In this talk we construct the N = 2 SUSY NLSM on the cotangent bundle over the non-
compact HSS E7(−25)/E6 × U(1). First we show how to derive general formula for the N = 2
SUSY NLSMs on cotangent bundles over all the compact and the non-compact exceptional HSSs
in the framework of the projective superspace formalism [13, 14]. The method to construct the
models in [8, 9, 10, 11, 12] is model-dependent and furthermore it is difficult to apply for the
exceptional types of the HSS such as the compact type E7/E6×U(1) and the non-compact type
E7(−25)/E6 × U(1). Accordingly, the other method to construct the N = 2 SUSY NLSMs on
cotangent bundles over the HSS has been developed in [13] and [14]. In this talk, we apply the

method to the case for the E7(−25)/E6 × U(1). Combined with the application to
E6(−14)

SO(10)×U(1)

given in [16], we complete construction of the N = 2 SUSY NLSM on the cotangent bundle over
all the HSSs.

2. N = 2 sigma models and the projective superspace

Projective superspace is described as (xµ, θαi, θ̄
i
α̇, ζ), where µ = 0, 1, 2, 3 is a space-time index,

α, α̇ = 1, 2 are spinor indices, i = 1, 2 is an SU(2)R index and ζ is the projective coordinate.
Superfields are functions on its subspace, which are defined by the so-called projective condition
[3] similar to the chiral condition in the four-dimensional N = 1 SUSY field theory. This
condition makes a number of the Grassmann coordinates be half and integration measure for
SUSY invariant action reduces to one on the full N = 1 superspace zM = (xµ, θα, θ̄α̇) with the
projective coordinate ζ. A certain class of four-dimensional N = 2 NLSM is described in terms
of N = 1 language as [17, 8, 9]

S[Υ, Ῠ] =
1

2πi

∮

dζ

ζ

∫

d8z K
(

ΥI(z, ζ), ῨJ̄ (z, ζ)
)

, (1)

where I, J are indices of fields2. The contour encircles the origin of the ζ-plane in anti-clockwise
direction. The action is written by the function of the superfields representing the polar
multiplets Υ and Ῠ, which are called an arctic superfield and an antarctic superfield respectively.
They are expanded with respect to ζ as

Υ(z, ζ) =

∞
∑

n=0

Υnζ
n = Φ+ Σ ζ +A , Ῠ(ζ) =

∞
∑

n=0

Ῡn(−ζ)−n , (2)

where Υ0 ≡ Φ is a chiral superfield (D̄α̇Φ = 0) and Υ1 = Σ is a complex linear superfield
(D̄2Σ = 0). An infinite set of unconstrained auxiliary fields is expressed as A which contains

terms with an order higher than ζ. The antarctic superfield Ῠ is a conjugate of Υ, which is
the combination of the ordinary complex conjugate and the antipodal map ζ 7→ −1/ζ on the

2 More general type of action has the form K(Υ, Ῠ, ζ) [5, 6].
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Riemann sphere. Note that the action (1) is an N = 2 extension of the general N = 1 SUSY
NLSM [1].

The action (2) is invariant under

K(ΥI , ῨJ̄ ) → K(ΥI , ῨJ̄) + Λ(ΥI) + Λ̆(ῨJ̄), (3)

and

ΥI → f I(ΥJ), (4)

respectively. The latter implies the reparametrization of the manifold, yielding the
transformation law for ΣI as

ΣI =
dΥI

dζ

∣

∣

∣

∣

∣

ζ=0

→ df I

dζ

∣

∣

∣

∣

∣

ζ=0

=
dΥJ

dζ

df I

dΥJ

∣

∣

∣

∣

∣

ζ=0

= ΣJ df
I

dΥJ

∣

∣

∣

∣

∣

ζ=0

. (5)

It is seen that ΣI transforms as a tangent vector.
In order to represent the action (1) in terms of physical fields (ΦI ,ΣJ) only, we need to

eliminate the auxiliary fields by using their equations of motion
∮

dζ

ζ
ζn

∂K(Υ, Ῠ)

∂ΥI
=

∮

dζ

ζ
ζ−n ∂K(Υ, Ῠ)

∂ῨĪ
= 0, n ≥ 2 . (6)

Let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) be a unique solution of the equation (6) with the initial conditions

Υ∗(0) = Φ,
dΥ(ζ)

dζ

∣

∣

∣

∣

∣

ζ=0

= Σ. (7)

For a general Kähler manifold, it is possible to eliminate Υn(n ≥ 2) and their conjugates by
solving (6) perturbatively [18]. After eliminating all the auxiliary fields, the following form of
the action is obtained

Stb[Φ,Σ] =

∫

d8z
{

K
(

Φ, Φ̄
)

+ L
(

Φ, Φ̄,Σ, Σ̄
)

}

, (8)

where L(Φ, Φ̄,Σ, Σ̄) is the part describing the tangent space:

L
(

Φ, Φ̄,Σ, Σ̄
)

=
∞
∑

n=1

L(n)
(

Φ, Φ̄,Σ, Σ̄
)

=

∞
∑

n=1

LI1···InJ̄1···J̄n

(

Φ, Φ̄
)

ΣI1 . . .ΣInΣ̄J̄1 . . . Σ̄J̄n . (9)

Here LIJ̄ = −gIJ̄(Φ, Φ̄) while the tensors LI1···InJ̄1···J̄n
(n ≥ 2) are functions of the metric

gIJ̄(Φ, Φ̄), the Riemann tensor RIJ̄KL̄(Φ, Φ̄) and its covariant derivative. The action (8) is
written by the base manifold coordinate Φ and the tangent vector Σ. Therefore this action
represents the N = 2 SUSY model on the tangent bundle over the Kähler manifold.

The rest of the work is to derive the Kähler potential of the cotangent bundle over the
Kähler manifold. It is carried out by changing the tangent vectors Σ’s in (8) into chiral one-
forms, cotangent vectors Ψ’s. It can be performed by the generalized Legendre transformation
[5] as follows.

Stb =

∫

d8z
(

K(Φ, Φ̄) + L(Φ, Φ̄,Σ, Σ̄)
)

 S =

∫

d8z
{

K
(

Φ, Φ̄
)

+ L
(

Φ, Φ̄, U, Ū
)

+ΨIU
I + Ψ̄Ī Ū

Ī
}

, (10)
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where U is a complex unconstrained superfield and Ψ is a chiral superfield. This action goes
back to the tangent bundle action (8) after eliminating the chiral superfields Ψ and Ψ̄ by their
equations of motion. On the other hand, eliminating U and Ū with the aid of their equations
of motion, the action is written only in terms of Φ,Ψ and their conjugates:

Sctb[Φ,Ψ] =

∫

d8z
{

K
(

Φ, Φ̄
)

+H
(

Φ, Φ̄,Ψ, Ψ̄
)

}

, (11)

where

H
(

Φ, Φ̄,Ψ, Ψ̄
)

=

∞
∑

n=1

H(n)(Φ, Φ̄,Ψ, Ψ̄)

=
∞
∑

n=1

HI1···InJ̄1···J̄n
(

Φ, Φ̄
)

ΨI1 . . .ΨInΨ̄J̄1
. . . Ψ̄J̄n

, (12)

with HIJ̄
(

Φ, Φ̄
)

= gIJ̄
(

Φ, Φ̄
)

. Here gIJ̄ is the inverse metric of gIJ̄ . The variables (ΦI ,ΨJ)
parameterize the cotangent bundle over the Kähler manifold and therefore the action gives the
Kähler potential of the cotangent bundle over the Kähler manifold.

The explicit forms of L and H are obtained in [12] and [13, 14] for the case that the base
manifold is the HSS respectively. Here we focus only on the derivation of H, which we are
interested in. The cotangent bundle action (11) has to be invariant under the following second
SUSY transformations [12]

δΦI =
1

2
D̄2
{

ε̄α̇θ̄
α̇ΣI

(

Φ, Φ̄,Ψ, Ψ̄
)}

, (13)

δΨI = −1

2
D̄2
{

ε̄α̇θ̄
α̇KI

(

Φ, Φ̄)
}

+
1

2
D̄2
{

ε̄α̇θ̄
α̇ ΓK

IJ

(

Φ, Φ̄
)

ΣJ
(

Φ, Φ̄,Ψ, Ψ̄
)

}

ΨK , (14)

with

ΣI
(

Φ, Φ̄,Ψ, Ψ̄
)

=
∂

∂ΨI
H
(

Φ, Φ̄,Ψ, Ψ̄
)

:= HI . (15)

The requirement of invariance under such transformations can be shown to be equivalent to the
following nonlinear equation [12]:

HIgIJ̄ − 1

2
HKHLRKJ̄L

IΨI = Ψ̄J̄ . (16)

Eq. (16) implies that

ΨIHI −HKHL(RΨ)KL = gIJ̄ΨIΨ̄J̄ , (RΨ)KL :=
1

2
R I J

K LΨIΨJ . (17)

By using the identities

ΨIHI = Ψ̄ĪHĪ =

∞
∑

n=1

nH(n), (18)

(17) is rewritten as

H(1) = gIJ̄ΨIΨ̄J̄ , nH(n) −
n−1
∑

p=1

H(p)K(RΨ)KLH(n−p)L = 0, n ≥ 2. (19)
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In order to solve this, it is useful to define

RΨ,Ψ̄ =

(

0 (RΨ)
J̄
I

(RΨ̄)
J
Ī

0

)

=

(

0 1
2R

KJ̄L
I ΨKΨL

1
2R

K̄JL̄
Ī

Ψ̄K̄Ψ̄L̄ 0

)

(20)

and

G(2k+2) = ΨIg
IJ̄
(

(RΨ̄RΨ)
k
) K̄

J̄
(RΨ̄)

L
K̄
ΨL = Ψ†

Ī
gĪJ

(

(RΨRΨ̄)
k
) K

J
(RΨ)

L̄
K Ψ̄L̄, (21)

G(2k+1) = ΨIg
IJ̄
(

(RΨ̄RΨ)
k
) K̄

J̄
Ψ̄K̄ = Ψ†

Ī
gĪJ

(

(RΨRΨ̄)
k
) K

J
ΨK , (22)

with k = 0, 1, 2 · · · . They satisfy the identities

ΨI
∂G(n)

∂ΨI
= Ψ̄Ī

∂G(n)

∂Ψ̄Ī

= nG(n), (23)

∂G(2k+2)

∂ΨI
= (2k + 2)gIJ̄

(

(RΨ̄RΨ)
k
) K̄

J̄
(RΨ̄)

L
K̄ ΨL

= (2k + 2)ΨJg
JK̄
(

(RΨ̄RΨ)
k
) L̄

K̄
(RΨ̄)

I
L̄
, (24)

∂G(2k+1)

∂ΨI
= (2k + 1)gIJ̄

(

(RΨ̄RΨ)
k
) K̄

J̄
Ψ̄K̄

= (2k + 1)Ψ†

J̄
gJ̄K

(

(RΨRΨ̄)
k
) I

K
. (25)

Now if we introduce the ansatz

H =

∞
∑

n=1

cnG
(n), (26)

where cn is a constant, we find that the differential equation (19) turns out to be the algebraic
equation

ncn −
n−1
∑

p=1

p(n− p)cpcn−p = 0, c1 = 1. (27)

The equation (27) is universal and independent of the Hermitian symmetric space. Therefore,
their solution can be deduced by considering any choice of the Hermitian symmetric space.
For instance, the projective complex space CP 1 can be used. These considerations lead to the
solution [13]

H(Φ, Φ̄,Ψ, Ψ̄) =
1

2
ΨTg−1F(−RΨ,Ψ̄)Ψ, (28)

where

Ψ =

(

ΨI

Ψ̄Ī

)

, g−1 =

(

0 gIJ̄

gĪJ 0

)

, (29)

F(x) =
1

x

{√
1 + 4x− 1− ln

(

1 +
√
1 + 4x

2

)}

, F(0) = 1. (30)
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For our purpose to construct the N = 2 supersymmetric NLSMs on the cotangent bundles
over exceptional Hermitian symmetric spaces, we shall rewrite (28) into a more convenient form
[14]. First performing the Taylor expansion for (28) one can see that H has the same form as
(26) with the coefficient cn given by

cn =
(−1)n−1F (n−1)(0)

(n− 1)!
. (31)

Second we introduce the differential operators

RΨ,Ψ̄ = −(RΨ)
J̄
I Ψ̄J̄

∂

∂ΨI
, R̄Ψ,Ψ̄ = −(RΨ̄)

J
Ī
ΨJ

∂

∂Ψ̄Ī

, (32)

which satisfy the following identity

RΨ,Ψ̄H(n) = R̄Ψ,Ψ̄H(n). (33)

With the use of (32), we can prove that (21) and (22) are compactly written as

G(n+1) =
(−RΨ,Ψ̄)

n

n!
|Ψ|2, |Ψ|2 := gIJ̄ΨIΨ̄J̄ , n ≥ 1. (34)

Substituting (34) with (31) into (26), we find

H =

∞
∑

n=0

F (n)(0)

n!

(RΨ,Ψ̄)
n

n!
|Ψ|2. (35)

Making use of the following formula

xn

n!
=

∮

C

dξ

2πi

eξx

ξn+1
, (36)

where the contour C encircles the origin of the complex ξ-plane in the counterclockwise direction,
we have

H =
∞
∑

n=0

F (n)(0)

n!

∮

C

dξ

2πi

eξRΨ,Ψ̄

ξn+1
|Ψ|2. (37)

Here the contour C must be chosen such that the function eξRΨ,Ψ̄ |Ψ|2 is analytic. Keeping this
in mind, one finds that (37) can be transformed into

H =

∮

C

dξ

2πi

F(1/ξ)

ξ
eξRΨ,Ψ̄|Ψ|2. (38)

The function F(1/ξ)/ξ gives a branch cut between −4 and 0. Since theH is regular and analytic,
the contour C has to be chosen so that it does not cross the branch cut. The resultant contour
encircles ξ = −4, 0 without crossing the cut and is bounded by poles of the factor eξRΨ,Ψ̄|Ψ|2.
One can transform the contour C as C ′ + C̃ where C ′ encircles the poles that may arise from
eξRΨ,Ψ̄|Ψ|2 in the counterclockwise direction and C̃ encircles those poles together with the branch
cut in the clockwise direction. One can check that contribution from the contour C̃ is just a
constant by substituting ξ = Reiθ with R → ∞ . Therefore, this does not contribute to the
Kähler metric and can be neglected. We finally have

H = −
∮

−C′

dξ

2πi

F(1/ξ)

ξ
eξRΨ,Ψ̄ |Ψ|2, (39)

where −C ′ goes in the counterclockwise direction, yielding the minus sign in front of the
integration.
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3. Cotangent bundle

In this section, we derive the cotangent bundle action of E7(−25)/E6 × U(1) by using (39). To
this end, we first derive the Kähler potential on E7(−25)/E6×U(1), which was firstly obtained in
[16]. The Kähler potential is written by the coordinates which are representation of the broken
generator for the case when E7(−25) is broken down to E6 × U(1). We shall write them as

ΦI → φi, Φ̄Ī → φ̄i. (40)

The transformation law for φ is obtained from the commutation relations:

[Ei, φj ] = φiφj − 1

2
ΓijkΓklmφ

lφm, (41)

[Ei, φ̄j ] = δij , [Ēi, φ
j ] = δji , (42)

[Ēi, φ̄j ] = φ̄iφ̄j −
1

2
ΓijkΓ

klmφ̄lφ̄m, (43)

[TA, φ
i] = −2iρ(TA)

i
jφ

j , [TA, φ̄i] = 2iφ̄jρ(TA)
j
i, (44)

[T, φi] = −i
√

2

3
φi, [T, φ̄i] = i

√

2

3
φ̄i. (45)

Here Γijk is the invariant tensor of E6. This is symmetric with respect to the indices (i, j, k)
and the complex conjugate is defined as (Γijk)† = Γijk. This satisfies the following identity

ΓijkΓ
ljk = 10δli, (46)

and the Springer relation [19]

ΓijkΓjl(mΓpq)k = δi(lΓmpq). (47)

One can see the closure of the algebra by checking the Jacobi identity.
The commutation relations (41)–(43) lead to the infinitesimal transformation law for φi:

δφi = ǫj [Ēj , φ
i] + ǭj[E

j , φi]

= ǫi − (ǭjφ
j)φi +

1

2
ΓijkǭjΓklmφ

lφm, (48)

where ǫi is the complex transformation parameter.
Now we look for the function being invariant under (48). To this end, we introduce the

E6 × U(1) invariants:

I1 = φ̄iφ
i, (49)

I2 = (Γijkφ
jφk)(Γilmφ̄lφ̄m), (50)

I3 =
1

9
(Γijkφ

iφjφk)(Γlmnφ̄lφ̄mφ̄n). (51)

They transform under (48) as

δI1 = (1− I1)(ǭiφ
i) +

1

2
(Γijkφ

jǫk)(Γilmφ̄lφ̄m) + c.c. (52)

δI2 = 2(Γijkφ
jφk)(Γilmφ̄lφ̄m)− (ǭiφ

i)I2 +
1

3
(Γijkφ

iφjφk)(Γlmnφ̄lφ̄mφ̄n) + c.c. (53)

δI3 = −(ǭiφ
i)I3 +

1

3
(Γijkφ

iφjφk)(Γlmnǭlφ̄mφ̄n) + c.c. (54)
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By using (52)–(54), one can check that the function

K = − ln

(

1− I1 +
1

4
I2 −

1

4
I3

)

(55)

transforms under the infinitesimal transformation (48) as

δK = (ǭiφ
i) + c.c. (56)

This shows that (55) is invariant under (48) up to the Kähler transformation (56). Thus we
conclude that (55) is the Kähler potential of E7(−25)/E6×U(1). The sign in front of the logarithm
in (55) cannot be determined by the invariance under (48). It is just chosen so that positivity
of the metric is ensured.

We are now ready to construct the cotangent bundle over E7(−25)/E6 × U(1). First we
introduce the cotangent vectors:

Ψ → Ψi, Ψ̄Ī → Ψ̄i (57)

Since we are considering the symmetric space, we set φ = φ̄ = 0 in calculations. The metric and
the Riemann tensor at φ = φ̄ = 0 are derived from (55):

g j
i

∣

∣

∣

φ=φ̄=0
=

∂2K

∂φi∂φ̄j

∣

∣

∣

φ=φ̄=0
= δ j

i , (58)

R j l
i k

∣

∣

∣

φ=φ̄=0
= δ l

i δ
j

k − ΓmikΓ
mjl + δ l

k δ
j

i . (59)

Then the differential operator (32) at φ = φ̄ = 0 is obtained as

RΨ,Ψ̄

∣

∣

∣

φ=φ̄=0
= −|ψ|2ψi

∂

∂ψi
+

1

2
(Γmikψiψk)Γmljψ

j ∂

∂ψl
, |ψ|2 := ψiψ̄

i, (60)

where ψ and ψ̄ are coordinates of the cotangent space at φ = φ̄ = 0. If we define the E6 ×U(1)
invariants in terms of the cotangent vector

x := ψiψ̄
i, (61)

y := (Γijkψjψk)(Γilmψ̄
lψ̄m), (62)

z := (Γijkψiψjψk)(Γlmnψ̄
lψ̄mψ̄n), (63)

the differential operator (60) is rewritten as

RΨ,Ψ̄

∣

∣

∣

φ=φ̄=0
= xD − 1

2
y
∂

∂x
− 1

3
z
∂

∂y
, D := x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
. (64)

The factor eξRΨ,Ψ̄x in (39) is calculated by using the Baker-Campbell-Hausdorff formula

eξRΨ,Ψ̄x
∣

∣

∣

φ=φ̄=0
= e−ξxDe

1
2
ξy ∂

∂x e
1
3
ξz ∂

∂y e
1
12

ξ2z ∂
∂x e−

1
4
ξ2yDe

1
18

ξ3zDx

=
∂

∂ξ
ln

(

1 + ξx+
1

4
ξ2y +

1

36
ξ3z

)

. (65)

The poles arising from this factor contribute to the integral in (39), which are obtained from
the equation

1 + ξx+
1

4
ξ2y +

1

36
ξ3z =

z

36
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3) = 0. (66)
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The explicit expressions of the poles are given in [16]. The cotangent bundle part (39) is led to
the form:

H = −
∮

−C′

dξ

2πi

F(1/ξ)

ξ

∂

∂ξ
ln

(

1 + ξx+
1

4
ξ2y +

1

36
ξ3z

)

= −
(F(1/ξ1)

ξ1
+

F(1/ξ2)

ξ2
+

F(1/ξ3)

ξ3

)

. (67)

The result at an arbitrary point of Φ can be obtained by the following replacements

x→ (g−1) j
i ΨjΨ̄

i , (68)

1

4
y → 1

2
((g−1) j

i ΨjΨ̄
i)2 − 1

4
R̃ j l

i k Ψ̄
iΨjΨ̄

kΨl , (69)

− 1

36
z → −1

6
((g−1) j

i ΨjΨ̄
j)3 +

1

4
((g−1) j

i ΨjΨ̄
i)(R̃ l n

k m Ψ̄kΨlΨ̄
mΨn)

− 1

12
|(g−1) j

i R̃
k m
j l ΨkΨ̄

lΨm|2 , (70)

where R̃ j l
i k = (g−1) m

i (g−1) j
n (g−1) p

k (g−1) l
q R

n q
m p .

4. Conclusion

We have constructed the N = 2 SUSY NLSM on the cotangent bundle over the non-compact
exceptional HSS M = E7(−25)/E6 × U(1) by using the results elaborated in [13] and [14].
The point is to use the projective superspace formalism which is an N = 2 off-shell superfield
formulation. Once an N = 1 SUSY NLSM on a certain Kähler manifold is obtained, it is
possible to extend it to the N = 2 SUSY model containing the corresponding N = 1 SUSY
NLSM. We first have derived the transformation law of the fields parameterizing M and have
constructed the N = 1 SUSY NLSMs on M invariant under the derived transformation laws.
Second we have extended the N = 1 SUSY NLSM to one with the N = 2 SUSY model by using
the explicit formula of the cotangent bundle over any HSS developed in [13, 14]. We have also
constructed the N = 2 SUSY NLSM on the cotangent bundle over E6(−14)/SO(10) × U(1) in
[16] (where more detailed derivation for E7(−25)/E6 × U(1) is given). By the series of works
[8, 9, 11, 12, 13, 14, 16], we have completed constructing the Kähler potentials of the cotangent
bundles over all the compact and non-compact HSSs listed in Table 1.
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[5] Lindström U and Roček M 1988 New hyperkähler metrics and new supermultiplets 1988 Commun. Math.

Phys. 115 21
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