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Abstract. The comparison of the statistical hadronization model with experimental data and
lattice QCD results is not always straightforward. Indeed, the interpretation of the φ meson
production, of the proton to pion multiplicity ratio at LHC and the agreement of the freeze-out
curve with the lattice critical line in the T − µB plane, require further analyses. Moreover
the dynamics of the hadronization has to be compatible with: 1) the statitical behavior also
observed in elementary high energy collisions; 2) a universal hadronization temperature for all
high energy collisions; 3) the freeze-out criteria. In these lecture notes the SHM is recalled and
some explanations of the puzzling aspects of its comparison with data are discussed.

1. Introduction
The statistical hadronization model (SHM) [1, 2, 3, 4, 5] is a useful tool to describe the hadron
formation at a scale where QCD is no longer perturbative and it has to be interpreted as a
coarse grained approach which, with a small number of parameters, successfully describes the
experimental data of the particle yields, of the low transverse momentum spectra and gives the
dependence on the baryochemical potential, µB, of the chemical freeze-out temperature, Tch,
i.e. the temperature where subsequent inelastic collisions between hadrons cease.

However, the comparison of the SHM with experimental and lattice results is not always
straightforward and, for example, the interpretation of the φ meson production, of the proton
to pion multiplicity ratio at LHC and the comparison of the freeze-out curve with the lattice
critical line in the T − µB plane [6, 7] require further analyses. In these lecture notes the SHM
and, in particular, some puzzling aspects of its comparison with data are reviewed.

In Sec. 2 the SHM is briefly summarized and Sec. 3 contains its comparison with specific
experimental data and lattice results which opens interesting questions on the underlying
dynamics. Sec.4 discusses the possible answers to the previous questions within the SHM
or by introducing some modifications, completely consistent with the statistical approach. A
possible understanding of other puzzling aspects, concerning the application of the SHM to
elementary (e+e− and hadron-hadron) collisions, the universality of the freeze-out temperature
in all high energy collisions and the theoretical basis of the freeze-out criteria, are recalled in
Sec. 5, where hadronization is interpreted as the Hawking-Unruh radiation in QCD. Comments
and conclusions are given in Sec. 6.

2. Statistical hadronization model
The statistical hadronization model assumes that hadronization in high energy collisions is a
universal process proceeding through the formation of multiple colorless massive clusters (or
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fireballs) of finite spatial extension. These clusters are taken to decay into hadrons according
to a purely statistical law: every multi-hadron state of the cluster phase space defined by its
mass, volume and charges is equally probable. The mass distribution and the distribution of
charges (electric, baryonic and strange) among the clusters and their (fluctuating) number are
determined in the prior dynamical stage of the process. Once these distributions are known, each
cluster can be hadronized on the basis of statistical equilibrium, leading to the calculation of
averages in the microcanonical ensemble, enforcing the exact conservation of energy and charges
of each cluster.

Hence, in principle, one would need the mentioned dynamical information in order to make
definite quantitative predictions to be compared with data. Nevertheless, for Lorentz-invariant
quantities such as multiplicities, one can introduce a simplifying assumption and thereby obtain
a simple analytical expression in terms of a temperature. The key point is to assume that the
distribution of masses and charges among clusters is again purely statistical [5]. Therefore, as
far as the calculation of multiplicities is concerned, the set of clusters becomes equivalent, on
average, to a large cluster (equivalent global cluster) whose volume is the sum of proper cluster
volumina and whose charge is the sum of cluster charges (and thus the conserved charge of the
initial colliding system). In such a global averaging process, the equivalent cluster generally
turns out to be large enough in mass and volume so that the canonical ensemble becomes a
good approximation. In other words, a temperature can be introduced which replaces the a
priori more fundamental description in terms of an energy density.

To obtain a simple expression for our further discussion, we neglect for the moment an aspect
which is important in any actual analysis. Although in elementary collisions the conservation of
the various discrete Abelian charges (electric charge, baryon number, strangeness, heavy flavour)
has to be taken into account exactly [8, 9], as we shall discuss in detail in Sec. 4, we here consider
for the moment a grand canonical picture. In general the average multiplicity of a given hadronic
species i then becomes

〈ni〉primary = di
V T

(2π)3

∫
d3p

1
γ−si

s exp[(Ei − ~µ~qi)/Tch]± 1
, (1)

where di is the degeneracy factor, Ei =
√
p2 +m2

i is the particle energy, si is the number
of strange quarks/antiquarks it contains, ~µi are the chemical potentials associated with the
conserved charges ~qi, V denotes the overall equivalent cluster volume, γs is the parameter
describing the strangeness suppression.

Here primary indicates that it gives the average number at the hadronization point, prior to
all subsequent resonance decays. As a second step, all resonances in the gas which are unstable
against strong decays are allowed to decay in lighter stable hadrons, using appropriate branching
ratios for the decay published by the Particle Data Group [10].

A typical fit of the experimental data in the SHM contains four parameters: Tch, V, µB and
γs and the strangeness suppression implies γs < 1 in elementary collisions.

In conclusion, the dynamics of the SHM corresponds to a gas of free hadronic resonances
(HRG) at fixed temperature and chemical potentials which includes the known resonances up
to a large mass (in general 2− 2.5 GeV).

In the next section we shall discuss some aspects of the comparison of the SHM with data.

3. Statistical hadronization model versus experimental data
Intuitively one expects a statistical behavior when there is a large number of partons in the
initial state and/or of hadrons in the final state, but an interesting aspect of the SHM is that it
is in good agreement with data for elementary collisions also [3, 4].
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For example, the comparison of the SHM fit to the p+p data for the abundances of about
20 different species for collisions at

√
s = 200 GeV, reported in table 1 of Ref. [11], gives a χ2/

d.o.f. = 15.6/14, with γs ' 0.6 and Tch ' 170 MeV. Surprising enough, also for e+e− there is
a good agreement with data, although the implementation of the SHM, the effective meaning
of the χ2/d.o.f and the role of heavy quarks produced in the initial state by the virtual photon
need some specifications [11, 12, 13, 14].

The strangeness suppression in elementary collisions is reported in Fig. 1 [15] and the
enhancement in nucleus-nucleus scattering [16] is depicted in Fig. 2 ( γs → 1) [15].

The compilation of the freeze-out temperatures for high energy (
√
s ≥ 20 GeV) elementary

and nucleus-nucleus collisions up to RHIC energy is reported in Fig. 3 and the independence of
the hadronization temperature on the initial setting of the scattering (elementary particles or
nuclei) clearly calls for a universal temperature for all high energy collisions.

Figure 1. Strangeness suppression, i.e. γs <
1, in elementary collisions, from Ref. [15].

Figure 2. Strangeness enhancement in heavy
ion collisions, i.e. γs → 1, in the grand
canonical description, Eq. (2). From Ref. [15].

The fits to the relativistic heavy ion data require the further parameter µB, describing the
baryon density, which turns out to be directly correlatd with the collision energy. The baryon-
chemical potential sharply decreases with increasing energy (µB is only a few MeV at RHIC
energy and µB ' 0 at LHC). The freeze-out temperature strongly depends on

√
s at low energy,

i.e. on the baryon density at large µB, and one obtains the freeze-out curve in fig.4 where is also
reported the result of the recent fit to LHC ALICE data [17] (see later) and depicted are the
curves obtained by imposing specific, intriguing, criteria. Indeed, the phenomenological freeze-
out curve can be described by requiring that the average energy per particle , < E > / < N >
is about 1.08 GeV and/or that the ratio between the entropy density, s and T 3

ch is about 7
[18, 19, 20, 21, 22, 23, 24]. The latter result is completely consistent with lattice data on s/T 3

at the critical temperature, for µB = 0 [25].
Finally, the recent LHC data are in good agreement with the SHM, however the proton to

pion multiplicity ratio shows a discrepancy of about 3 standard deviations (see Fig. 6) [26, 27].
The previous brief summary of the comparison of the SHM with data calls for an

understanding of the hadronization process which answers the following questions:

• Why is strangeness production universally suppressed in elementary collisions?
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Figure 3. Universal behavior of freeze-out
temperature for elementary and heavy ion
collisions at high energy.

Figure 4. Freeze-out curve from SHM and
comparison with the freeze-out criteria, see
text.

Figure 5. Suppression of φmeson production
with centrality for Au-Au collision. The red
curve is the fit based on the core-corona model
[34].

Figure 6. SHM fit to LHC data. Difference
(data-fit) in standard deviation units, from
Ref. [26].

• Why is there (almost) no strangeness suppression in nuclear collisions?
• Why is the proton/pion ratio at LHC in disagreement with the SHM fit?
• Is the freeze-out curve consistent with the lattice deconfinement critical line?

and, at a more fundamental level,

• Why do elementary high energy collisions show a statistical behavior?
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• Why is there a universal hadronization temperature for all high energy collisions?
• Why does hadron freeze-out correspond to s/T 3 ' 7 or < E > / < N >' 1.08 GeV?

In the next sections we shall discuss some possible answers and the separation of the questions
in two different groups will become more clear.

4. Statistical hadronization: conservative answers to open questions
Let us now consider the first set of questions for which some answers can be obtained within
the SHM or consistently with it.

4.1. Canonical suppression, strangeness enhancement and the φ meson
The average particle number in the grand canonical ensemble is given by Eq. (1), which by using
the Boltzmann approximation can be written as

〈ni〉primary =
diV Tm

2
i

2π2
γsi

s K2

(mj

T

)
(2)

where K2(x) is the Hankel function ( K(x) ∼ exp{−x} for large x). Notice that the ratio of
particle yields is V independent, however, as we shall clarify later, the nature of V in elementary
collisions is quite different from that in nuclear collisions and this can effectively lead to different
behavior in the two cases.

The local conservation of charges, and in particular of strangeness, has been proposed for
quite some time as the mechanism responsible for strangeness suppression [8, 9, 2]. The
local strangeness suppression is based on two features. First, one imposes exact strangeness
conservation, which leads to a volume-dependent strangeness reduction. However, in elementary
collisions with the corresponding overall equivalent cluster volume, the resulting reduction is not
sufficient to account for the observed strange particle rates. Hence it was argued that if in a given
collision only one pair of strange hadrons is produced, these should appear close to each other
spatially, the more so if the medium is relatively short-lived. This approach thus introduces
somewhat ad hoc a strangeness correlation volume Vc < V , within which strangeness has to be
conserved exactly. The corresponding model thus now has T , V and Vc as the parameters to
be specified by the data, and fits based on such a model provide as good an account for the
data as the earlier γs scheme [28, 29], with the exception of the φ, to which we return later. In
Fig. 7 is shown the effect of the strangeness correlation radius, Rc, in the particle yields and
the comparison with the grand canonical results. For Rc ≥ 2 − 3 fm the canonical suppression
almost disappears. In Fig. 8 the values of Rc to fit the data at SPS and RHIC energies is given
and extrapolated at LHC energy [30].

A priori little is known about Vc, and in particular, what happens to it in nuclear collisions.
The physical origin of Vc has been clarified in Ref. [31] and is due to the causality constraint in
the hadronization mechanism.

The evolution of elementary high energy collisions is generally described in terms of an
inside-outside cascade [32]. It specifies a boost-invariant proper time τq, at which local volume
elements experience the transition from an initial state of frozen virtual partons (“color glass”)
to the almost on-shell partons which will eventually form hadrons. This partonisation time
can be estimated most easily in e+e− annihilation where the initial quark-antiquark pair is
bound by a string of tension σ. When the separation distance R of the initial pair exceeds
the energy 2ωq of an additional q̄q pair, the string breaks and the virtual pair is brought on-

shell. For quarks of mass mq, this energy is determined by σR = 2
√
m2

q + k2
T , where kT is the

transverse momentum of each quark in the newly formed pair. Through lattice simulation [33]
kT =

√
πσ/2, leading to R '

√
2π/σ ' 1 fm, using σ ' 0.2 GeV2 and mq � σ. From this,
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Figure 7. Comparison of grand canonical
calculations with the canonical suppression
ones, including a correlation volume with
radius Rc , from Ref. [30].

Figure 8. Extrapolation ofRc at LHC energy
[30].

we estimate τq '
√
σ/2π ' 1 fm. This process is subsequently iterated, leading to a cascade of

emitted q̄q pairs; while the first pair appears at rest in the center of mass of the annihilation
process, the subsequent pairs are produced at increasing rapidities. The different pairs will
eventually bind to form free-streaming hadrons; for a boost-invariant evolution, this defines a
second time threshold, the hadronization time τh > τq. The generalization to pp collisions is
straightforward: again there is a finite time τq needed to bring the partons on-shell, and after
a larger time τh, these combine to form hadrons. We denote the bubbles of medium for proper
time τ , with τq < τ < τh, as “fireballs”. Hadronization thus occurs through the formation of
partonic fireballs in a cascade of increasing rapidities. It turns out from simple calculations and
it is clear from Fig. 9 that there are hadronizing clusters with different spatial rapidity η that
are causally disconnected. This remains valid also including the spatial extension of the fireball,
defined an evaluated in Ref. [31] as depicted in Fig 10.

The strangeness correlation volume Vc should be identified in fact with that one of a causally
connected cluster; causal connectivity thus provides the fundamental reason for local strangeness
conservation and hence for the strangeness suppression observed in elementary interactions. It
is moreover clear that in nucleus-nucleus interactions, the overlapping fireballs produced at
fixed rapidity by the different nucleon-nucleon collisions will give rise to a much larger causally
connected volume and thus effectively remove the locality constraints. Moreover, if very high
energy pp interactions lead to multiple jet production, this could eventually lead to a similar
effect, with overlapping clusters from the different jet directions. This is indeed experimentally
observed and the strangeness suppression decreases by increasing the energy of the pp collision
(in the description of the suppression with γs , one has γs ' 0.6 for

√
s = 200 MeV and γs ' 0.8

at
√
s = 900 MeV).

One can show [31] that the size of the causally connected cluster volumes varies with the
fireball life-time,τh. An obvious question therefore is whether the fits to production data lead
to reasonable cluster sizes. It is found [28, 29] that good fits to data at

√
s = 17.3 and

200 GeV require a strangeness correlation radius of about 1 fm, while leading to the same
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Figure 9. Evolution of the space-time
diagram of fireball with no spatial extension.
The yellow area indicates the space-time
events causally connected with the fireball at
rest in the center of mass system.

Figure 10. Fireballs with finite spatial ex-
tension and their causally connected regions.
See Ref. [31] for details.

universal hadronization temperature of about 160 MeV. This is seen [31] to be in accord with a
hadronization time τh of about 2 - 3 fm. For an evolution of the kind shown in Fig 10 that makes
good sense: it takes about 1 fm to form the first q̄q pair, and another to have it hadronize. The
causality constraints in elementary high energy collisions thus appears to provide the reason for
the observed strangeness suppression, thereby justifying the strangeness correlation model.

However, it should be stressed that the canonical suppression is implemented at hadronic level
and therefore there is no suppression for hidden strangeness, i.e. the φ meson. Indeed, It is found
experimentally that the φ meson, consisting of an ss̄ pair, is also suppressed, although from a
hadronic point of view, it is of zero strangeness. Fig. 5 shows the data on the φ suppression
for peripheral collisions (similar to elementary pp-collisions) with respect to central ones [34].
In the conventional statistical model with a strangeness suppression factor, the power of γs is
determined by the number of s plus s̄ quarks a given hadron contains. Hence the φ gets a factor
γ2

s , which leads to rough agreement with the data. In contrast, in a canonical formulation on a
hadronic level, the φ does not present any quantum number to be conserved exactly and is not
subject to any suppression.

The disagreement of the φ abundance may be a signal that strangeness correlation really
occurs already on a pre-hadronic level. Requiring exact strangeness conservation for the quark
system in the fireball prior to hadronization would in fact result in canonical strangeness
suppression of both open and hidden strangeness. A more conservative answer is the core-
corona model [34, 35], which is a minimal modification of the SHM and describe the heavy ion
scattering as a superposition of a fully equilibrated core (where γs = 1) and single nucleon-
nucleon collisions (γs < 1). The corona is indeed defined by the number of nucleons colliding
only once , evaluated by Glauber Monte Carlo method. The model introduces a new parameter,
essentially describing the non geometrical aspects of the collisions, which is fixed by data in one
centrality bin. The red curve in Fig. 5 is the core-corona fit to the φ production and the model
is successfully applied to many other particle species.

4.2. The proton/pion puzzle at LHC
The unsatisfactory SHM fit to proton production at LHC energy, reported in Fig. 6, is a
surprising result since the SHM works very well for nucleus-nucleus scattering up to RHIC
energy for particle multiplicities which differ of many orders of magnitude.
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Whithin the SHM a solution could be a modification of the resonance spectrum, crucial
ingredient in the calculation of the yields, due to low mass resonances (still undetected but
predicted by lattice QCD) or to high mass Hagedorn states (HS), with mass m and spectrum
ρ(m) ' exp(m/T ) (see Ref. [36] for a review of the Hagedorn states). At a temperature about 160
MeV, one can populate the hadrons using multihadronic decay reactions, nπ → HS → n

′
π+X̄X

where X̄X = p̄p, K̄K, Λ̄Λ and the results are reported in Fig. 11 [37] where the solid black dots
represent the situation where there are no initial protons, kaons, and lambdas in the system
(while the pions and Hagedorn states begin in chemical equilibrium) whereas the outlined circles
represent the scenario when all hadrons begin in chemical equilibrium,

Figure 11. Calculations vs. experimental
data points of ALICE at Pb+Pb at

√
sNN =

2.76 TeV from Ref. [37].

Figure 12. Phase diagram of strongly in-
teracting matter: the coloured areas repre-
sent the widths of the crossover transitions.
The dashed line is the chemical freeze-out
line whilst the reconstructed original chemi-
cal equilibrium points in this work are shown
as closed circles, see ref.[38].

While the previous proposal depends on a somehow arbitrary modification of the spectrum
and a different understanding of the proton/pion puzzle could be the effect of the inelastic
reactions between hadrons in the final state which induce changes in the baryon yields and
in the chemical freeze-out curve. More precisely, all previous determinations of the points
in the (T, µB) plane, in the framework of SHM, have implicitly assumed that the primordial
hadro-chemical equilibrium (an intrinsic feature of the hadronization process as observed in
elementary collisions) remains frozen-in throughout the final expansion phase in heavy ion
collisions. On the other hand, the baryon-antibaryon annihilation and regeneration processes do
not fall away with the onset of expansive cooling (Ref. [38] and references therein). Their final
effect consists of a distortion of the initial, post-hadronization equilibrium yield distribution,
in the antibaryon and baryon sector. The dynamical implemenation of this inelastic collisions
in the final hadron/resonance expansion phase requires a specific code and the UrQMD hybrid
model has been used in Ref. [38, 39]. The differences between the initial and the final hadronic
multiplicities after the rescattering stage resemble the pattern of data deviation from the
statistical equilibrium calculations, that is the ”afterburner” corrections considerably reduces
the χ2 per d.o.f. in Fig. 6 and the freeze-out temperature [38, 39].

The previous ”correction” to the standard SHM seems to help to solve another problem.
The freeze-out curve converges towards the lattice QCD phase critical line, at small µB, but
it appears to fall well below the line toward higher values of µB. By taking these corrections
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into account in the statistical model analysis of the data, one is able to reconstruct the original
hadrochemical equilibrium points in the (T, µB) plane [38] which closely follow the parton-hadron
phase boundary recently predicted by lattice QCD at finite density.

However, the UrQMD hybrid model does not take into account the baryon and antibaryon
regeneration. In Ref. [40] it has been clarified that the regeneration process reduces the
”afterburner” correction of about 10 − 20% and moreover one has to understand if the same
mechanism is at work for hyperons since the resulting suppression is not observed in LHC data.

In conclusions, within the SHM or by introducing some modifications , not in contradiction
with the statistical approach, one can answer the first set of questions of Sec. 3. However,
the other questions (universal freeze-out temperature at high energy; success of the SHM in
elementary collisions; freeze-out criteria) require a more detailed analysis of the dynamics
underlying the hadronization process. The recent proposal of considering the hadron production
as the Hawking-Unruh in QCD [41, 42] is recalled in the next section.

5. Confinement, string breaking and freeze-out criteria
In high energy heavy ion collisions multiple parton scattering could lead to kinetic
thermalization, but e+e− or elementary hadron interactions do not readily allow such a
description. Moreover, the universality of the observed temperature suggests a common behavior
in all high energy collisions or, in other terms, another non-kinetic mechanism providing a
common origin of the statistical features.

Indeed a similar mechanism is well known in general relativity: for a black-hole the Hawking
radiation [43] has a thermal spectrum (with the limits discussed in Ref. [44]), with the Hawking
temperature Thaw = k/2π = 1/8πGM , where k is the surface gravity (roughly, the acceleration
at the event horizon) and G is the Newton constant. As shown in Ref. [45, 46] this result can
be understood in terms of tunneling through the event horizon.

More generally, Unruh [47] discovered that for an observer in uniform acceleration a the
Minkowski vacuum corresponds to a thermal bath with a temperature Tu = a/2π. For the
uniformly accelerated observer (Rindler observer) there is an event horizon and the analogue of
the Hawking radiation can be evaluated by particle tunneling through the event horizon [48]. It
has a thermal spectrum with temperature Tu [47, 49, 41, 48].

It is rather interesting to see if some of the previous considerations apply to QCD dynamics.
Indeed lattice simulations and phenomenological analyses indicate that the large distances
behavior of the potential V between two static color charges increases linearly with the separation
r, V = σr. Therefore, QCD at large distances has a typical Rindler force, i.e. a constant
acceleration, usually associated with a flux tube (a string) between a quark and an antiquark.

The phenomenological consequences of a constant acceleration and of the breaking of the flux
tube in the high energy hadronization process have been analyzed in Ref. [41, 12, 50] with the
conclusion that: 1) there is a universal Unruh temperature associated with the hadronization,
Th ' 160 ± 10 MeV for massless quarks; 2) a small difference in the acceleration due to quark
masses (ms 6= mu = md) explains the strangeness suppression in elementary collisions; 3) this
suppression is almost removed in heavy ion collisions.

In this framework a possible understanding [51] of the unexplained freeze-out condition
〈E〉/〈N〉 ' 1.09 GeV , for µB ' 0, seems rather natural. Indeed, the fundamental mechanism of
hadronization is quark acceleration or deceleration, leading to string breaking with the resulting
pair production and to the universal Unruh temperature. The maximum q̄q separation distance
R, previously evaluated for mq = 0, is given by R =

√
2π/σ.

The Unruh phenomenon, in high energy collisions, is responsible for the production of newly
formed hadrons, therefore, it cannot address the role of the nucleons already present in the initial
state of heavy ion collisions. As such, it captures the whole of the freeze-out process only as
long as there are no significant baryon-density effects, i.e., only for µB ' 0, corresponding to
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high energy collisions where the large part of produced hadrons are qq̄ mesons. Therefore, the
energy of the pair produced by string breaking, i.e. of the newly formed hadron is from previous
equation, Eh = σR =

√
2πσ.

In the central rapidity region of high energy collisions, one has µB ' 0 so that Eh is in fact
the average energy < E > per hadron, with an average number < N > of newly produced
hadrons. Hence one obtains

< E >

< N >
=
√

2πσ = 1.09± 0.08 GeV (3)

for σ = 0.19± 0.03 GeV2.
The possible explanation of the other freeze-out condition, s/T 3

ch ' 7, is much more subtle.
Indeed, in the hadronization process one deals with quantum particles, relativistically accelerated
by the strong Rindler force, which experience a spacetime with an event horizon. From this
point of view, since there is no gravitational interaction, the corresponding entropy has to be
considered as an entanglement entropy due to causally disconnected regions. On the other hand,
a quantum field near an event horizon has modes belonging to both sides, inside and outside
the horizon, whose entanglement entropy can be computed to give Sent = αA/r2, see, e.g.,
[52, 53, 54]. Here A is the area of the event horizon, r is the scale of characteristic quantum
fluctuations, α is an undetermined numerical constant.

For a black-hole α = 1/4 and r2 = G (in natural units). However, the metric of a uniformly
accelerated observer corresponds to the near horizon approximation of a black-hole metric if the
acceleration a is equal to the surface gravity k and therefore, by taking the phenomenological
point of view of the analogy with the corresponding gravitational horizon, in Ref. [51] α = 1/4
has been chosen. The scale of the characteristic quantum fluctuations for the quark-antiquark
string is given by rT = 1/kT .

If for the entropy associated with hadron production at the string breaking the formula

Sh =
1
4
Ah

r2T
=

1
4

4πR2

r2T
(4)

is used with R =
√

2π/σ and T '
√
σ/2π [41], one gets Sh = π3. The entropy density divided

by T 3
h at freeze out (for µB ' 0) turns out to be

s

T 3
h

=
Sh

(4π/3)R3T 3
h

=
3π2

4
' 7.4. (5)

compatible with the phenomenological value.

6. Comments and Conclusions
We have seen that all abundances in high energy collisions, including those of strange hadrons,
are indeed given by an ideal resonance gas with some improvements/modifications compatible
with a statistical approach. The underlying hadronization mechanism of the string breaking can
answer some aspects of the comparison of the SHM with data.

We thus find that high energy heavy ion collisions produce essentially a medium which can
be considered as hadronic matter in equilibrium, formed at the pseudocritical hadronization
temperature predicted by lattice QCD.

However, we want to find in the collision data some sign of the QCD transition, of something
like a critical behavior ([55] and reference therein). For example, sufficiently close to a continuous
transition, correlations appear at all scales because the correlation length diverges, and in QCD
this must produce strong deviations from the ideal hadron gas behavior.

15th International Conference on Strangeness in Quark Matter (SQM2015) IOP Publishing
Journal of Physics: Conference Series 668 (2016) 012002 doi:10.1088/1742-6596/668/1/012002

10



An interesting ansatz to understand hadronization and freeze-out parameter is provided in
Refs. [56, 57] which reverse the mechanism of Mott dissociation of hadrons, occuring under
compression and heating of hadronic matter as a delocalization of bound states of quarks, and
picture the chemical freeze-out as a localization of the quark wave functions in the expanding
and cooling fireball. This leads to a description of the chemical freeze-out line in the (T, µB)
plane.

The study the fluctuations of conserved quantum numbers in an ideal hadron gas, compared
to both lattice results and heavy ion data, has been proposed as an signature of the critical
behavior (see, for example, Ref. [58]). However, the difference between the HRG and lattice
simulations is effectively visible only for quantities which involve high derivatives of P/T 4 with
respect to the chemical potentials (i.e. higher cumulants [58, 59]), and therefore the experimental
detection requires a large number of events or physical conditions which enhance the fluctuations.
Therefore, since a first order phase transition is expected at large µB, the future accelerators
for heavy ion collisions will have the chance to detect the deconfinement transition by analyzing
the strong fluctuations of the conserved charges.
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