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Abstract. A review of the work conducted in Gas Lasers Laboratory of P.N. Lebedev Physical 
Institute of the Russian Academy of Sciences and devoted to a research of the diagnostic of 
dynamics of small-signal gain, temperature and population of vibrational levels in the CO-
containing gas mixtures excited by pulsed electron-beam sustained discharge is presented. With the 
help of laser probing techniques the nonlinear Zeeman splitting of the NO lines in a strong 
magnetic field was also investigated. The studies of gain of the train of nanosecond pulses allowed 
us to estimate the intensity of the gain saturation of the active medium of the pulsed electron-beam 
sustained discharge CO laser. 

1.  Introduction 
A significant step forward in the study of kinetic processes occurring in the active medium of electric-
discharge CO lasers is the transition from the comparison of the calculated and measured lasing properties 
of these lasers to a direct comparison of the gain of the active medium, and other parameters of low-
temperature plasma. This considerably simplifies the theoretical modeling and reduces the number of 
parameters measured in the experiment, since it removes the need for modeling the processes of light 
generation. In addition, the characteristic time of the formation of the population inversion and, 
consequently, the small-signal gain (SSG), is very important for fast-flow CO lasers with both transverse 
and longitudinal circulation of the active medium because they have to be considered when developing the 
design of lasers. Thus, there is a need to study the temporal dynamics of the gain in the active medium of a 
CO laser under various experimental conditions, in particular, typical for the CO lasers with rapid 
circulation of the active medium. Also, most important among these conditions (specific input energy and 
composition of the gas mixture) can be simulated by a pulsed electron-beam sustained discharge (EBSD) 
CO laser system with stationary cryogenic cooling of the active medium. 

In the CO laser the dependence of the SSG of the temperature plays a particularly important role, 
however, it is very difficult to measure the temperature of the gas directly in the field of electrical 
discharge. In the paper [1] aimed at measuring the dynamics of the temperature of the active medium 
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under conditions of electric discharge it was used the fact that the rotational temperature of excited states 
of the CO molecules became equal to the translational temperature during the time less than 1 ns. The 
dynamics of the rotational temperature of the gas was evaluated from the dynamics of the SSG for three 
rotational transitions within a single vibrational band, which was measured using the continuous 
frequency-selective CO laser as a probe laser. However, the implementation of such a technique with ten 
percent accuracy of measuring the SSG results in a high error (~200 К) in determining the gas temperature 
[2]. To increase the accuracy it is necessary, as it follows from [2], to increase the number of probed 
transitions by several times, i.e. develop a method for the multifrequency probing of active medium of the 
pulsed CO laser. 

2.  Multifrequency laser probing of the active medium of the CO laser 
In [3, 4] a method of multifrequency laser probing was developed, which was used for the diagnosis of the 
SSG, temperature and population of vibrational levels in the CO-containing gas mixtures excited by a 
pulsed EBSD. Optical measuring scheme is shown in figure 1. The dynamics of the SSG at the 
vibrational-rotational transitions 1  V V P J of the CO molecule in various mixtures for various 
specific input energy Qin was experimentally studied [3]. Figure 2 shows the dynamics of small-signal 
gain in the mixture CO:N2 = 1:9 for three transitions. It demonstrates that an increase in the vibrational 
number V the maximum gain Gmax is reduced, and it is achieved at a later time. The maximum gain Gmax is 
reduced threefold for V=31 in comparison with value Gmax for V=7. It was found that at a fixed value of V 
the rate of the rise of the SSG is increased with increasing the rotational number. 
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Figure 1. Optical scheme of experiments: (1) laser 
amplifier; (2) probe laser; (3) beam splitter; (4) IR 
spectrometer; (5, 6) photodetectors; (7) spherical mirror; (8) 
diffraction grating. 

Figure 2. The SSG dynamics in the 
CO:N2=1:9 mixture at 8 7 P(10) (1), 
14 13 P(10) (2) and 21 20 P(11) 
(3) transitions for Qin =800 J L-1 
Amagat-1.

It was shown that for the oxygen-containing gas mixtures (CO:O2 = 1:19) the value Gmax at lower 
vibrational transitions (for V <13) can be significantly greater than Gmax for the mixture in which the 
nitrogen is used instead of oxygen (CO:N2 = 1:19). It has been found that the efficiency of the CO laser 
operating on a mixture with higher oxygen content is increased up to 47% in comparison with the 
efficiency of the CO laser operating on the nitrogen-containing gas mixture (where it equals to 30%).  

It has been demonstrated that the method can reduce the error in the determination of the gas 
temperature up to 3% [4]. It was found that in the mixture of CO:O2 the population of lower vibrational 

IX International Conference on Modern Techniques of Plasma Diagnostics and their Application IOP Publishing
Journal of Physics: Conference Series 666 (2016) 012020 doi:10.1088/1742-6596/666/1/012020

2



levels of the CO molecule can be several times higher than the population of respective levels in the laser 
mixtures CO:He and CO:N2. However, the temperature rise in the oxygen-containing mixtures is 
significantly higher than that in helium and nitrogen mixtures. Figure 3a shows the time dependence of the 
absorption for three transitions of the CO molecule, on the basis of which the temperature dynamics has 
been determined (figure 3b). 

Figure 3. Absorption coefficient of the probe radiation (а) at the transitions in the 9 8 Р band for J=9 
(1), 11 (2), and 15 (3), and the temperature dynamics (b) of the СО:О2=1:19 gas mixture for pressure 30 
Torr, initial temperature 290 K, and Qin = 250 J L-1 Amagat-1. 

Figure 4. The SSG dynamics in the CO:He:O2=1:4:X mixture at the 10 9 P(15) transition for five values 
of X (Qin = 130 J L-1 Amagat-1). The inset shows the dependence of Gmax on X for Qin = 240 ( ) and 130 J 
L-1 Amagat-1 ( ). The measurement error is within the marker size, except the shown error bars. 
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Further research showed [5] that the addition of molecular oxygen to the working mixture of a pulsed 
EBSD CO laser amplifier multiplies the SSG of the active medium in the vibrational transitions of the CO 
molecule for V from 6 to 13 (figure 4), which is associated with an increase of the population of the 
vibrational levels. However, the lifetime of the gain decreases for all the probed transitions.  

Figure 5 shows the vibrational energies of transitions of O2, CO and N2 molecules. This figure 
demonstrates the essential role of kinetic processes of intermolecular vibrational-vibrational (VV') 
exchange for the excitation of the CO molecules. It was found that the addition of oxygen increases the 
efficiency of the CO laser at the fundamental transitions, and the efficiency reaches its maximum value at 
lower values of specific input energy. It has been shown that the pulsed EBSD CO laser can operate on the 
air working mixture both at the fundamental transitions and the first overtone vibrational transitions 
V+2 V. 

Figure 5. Vibrational transition energies of O2, CO, and N2 molecules. 

In the paper [6], we researched the influence of small additions of O2 on the dynamics of small-signal 
gain of the active medium of a pulsed EBSD CO laser at cryogenic temperature. Using a numerical model 
of the laser active medium has enabled us to find out how the VV'-exchange between vibrationally excited 
molecules at high levels of CO and oxygen molecules affects the dynamics of small-signal gain. 
Methodology based on a comparison of the measured and calculated dynamics of small-signal gain for a 
number of transitions (figure 6) enabled us to determine the parameters of the analytical approximation of 
the rate constants of the VV'-exchange for the pair of molecules CO-O2 at cryogenic temperature of the 
active medium. 

3.  The research of the Zeeman splitting of the IR absorption lines of the NO molecule 
In the paper [7], the dependence of the Zeeman splitting of the vibrational-rotational lines of the NO 
molecules on the value of a strong magnetic field with magnetic induction up to 6 Tesla was theoretically 
and experimentally studied. Measurement of absorption in a pulsed magnetic field was also carried out 
using a CW frequency-tunable CO laser operated in a single line selective mode. To analyze the dynamics 
of absorption, a numerical model of the nonlinear Zeeman splitting of the NO lines has been developed. 
The NO molecules absorption dynamics in a pulsed magnetic field was described by the calculation model 
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in a cubic approximation of the value of magnetic induction. A non-linearity of the Zeeman splitting lines 
of the Q- and P-branches of the vibrational-rotational transitions of the NO molecules in the 2

3/2 state 
was found. Particularly, for the lines Q(2.5), P(5.5) and P(6.5) the non-linearity of the Zeeman 
components of the lines was identified for the magnetic induction of 4 T. Comparison of the calculated 
and measured absorption dynamics of the probe radiation showed that the calculation model reproduces 
well the position of the measured absorption peaks depending on the induction of a pulsed magnetic field 
(figure 7), that allowed, thus, to identify the Zeeman components of the absorption lines of the NO 
molecules. 

Figure 6. The SSG dynamics at the 18 17 P (15) transition for Qin = 240 J L-1 Amagat-1 in the gas 
mixture CO:He:O2=1:4:0.05. Experimental (1) and calculated values (2-4) are shown for various values of 
the VV’ exchange rate constant. 

Figure 7. Experimental (a) and calculated (b) absorption dynamics a(t) for the NO molecules for the CO 
laser line 9→8 P(15) in a damped oscillating magnetic field (c). Time instant corresponding to the value 
of B as high as 5 T is marked by the dash-dot lines. 
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4.  The research of the CO laser nanosecond pulses amplification 
The works [8, 9] were dedicated to a study of the active mode-locking of the EBSD CO laser, creating a 
master oscillator and laser amplifier system emitting a train of nanosecond pulses, as well as to a research 
of nanosecond pulse train amplification in the active medium of the CO laser amplifier. The duration of 
the spikes was 10 ns, with the minimum value of the duration, achieved in our experiments, equal to ~5 
ns. We got the dependence of the output laser energy of the amplifier from the input laser energy delivered 
to the amplifier for various values of the specific input energy delivered to the EBSD and of the relative 
density of the working gas mixture, which had a clearly non-linear character. This fact indicates the 
saturation of amplification of the active medium. 

Maximum peak power Рpeak of the radiation amplified in one pass for the СО : Не = 1 : 4 mixture was 
380 kW (figure 8) for the 3.2 J total energy of a train of nanosecond pulses at the output of the laser 
amplifier in the nonselective mode and 100 kW for, respectively, 1.1 J in the frequency-selective mode. At 
the same time the efficiency of the “master oscillator-laser amplifier” system compared to the pure laser 
mode of forming a train of nanosecond pulses increased by a factor of 2 in the selective mode, reaching 
1.6%, and, respectively, by a factor of 1.5 for the non-selective mode, amounting to 5.3% [9]. To estimate 
the saturation parameter, the rotational relaxation time of the CO molecules was calculated for our 
conditions, and amounted to 1.7 ns that is significantly shorter than the duration of the radiation spikes. By 
comparing the experimental and calculated dynamics of the radiation spikes at the output of the laser 
amplifier the value of the saturation intensity of nanosecond pulses amplification was found in the active 
medium, amounting IS = 14 4 kW/cm2 for the vibrational-rotational transition of the CO molecule 9-8 P 
(11) at Qin = 210 J/(L Amagat). 

Figure 8. The power of a train of nanosecond pulses 
at the input (blue) and the output (red) of laser 
amplifier for nonselective mode (~ 10 spectral lines 
in the range from 5.1 to 5.4 microns). The inset 
shows the beginning of the train of nanosecond 
pulses, illustrating the shape and repetition frequency 
of the spikes. 

Figure 9. Experimental data for dynamics 
of the radiation spike at the input (blue) 
and output (red) of the amplifier at t = 37 

s, and the calculation results (black 
curves) for the values of gain saturation 
intensity IS = 20 kW cm-2 (1), IS = 15 kW 
cm-2 (2), and IS = 10 kW cm-2 (3). 
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5.  Conclusion 
Developed and applied in the Gas Lasers Laboratory of P.N. Lebedev Physical Institute of the Russian 
Academy of Sciences, a method of multifrequency laser probing enabled us to hold a series of studies on 
the diagnosis of the dynamics of the small-signal gain, temperature and population of vibrational levels in 
the CO-containing gas mixtures excited by a pulsed electron-beam sustained discharge. With its help we 
also studied the non-linear Zeeman splitting of the NO lines in a strong magnetic field. The researches of 
amplification of a train of nanosecond pulses enabled us to estimate the intensity of the gain saturation in 
the active medium of a pulsed electron-beam sustained discharge CO laser. 

This work was partially supported by Russian Foundation for Basic Research (grant 13-02-01135). 
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