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Abstract. Recent progress in quantum Monte Carlo with modern nucleon-nucleon
interactions have enabled the successful description of properties of light nuclei and neutron-
rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating
an isospin asymmetry, and its connection to the structure of neutron stars. Combining these
advances with recent observations of neutron star masses and radii gives insight into the equation
of state of neutron-rich matter near and above the saturation density. In particular, neutron
star radius measurements constrain the derivative of the symmetry energy.

1. Introduction
In the last few decades, properties of nuclear systems have been successfully described by
nucleon-nucleon potentials like Argonne and Urbana/Illinois forces, that reproduces two-body
scattering and properties of light nuclei with very high precision [1, 2]. These nuclear
potentials reproduce several properties of nuclear systems extremely well, including binding
energies of ground- and excited states, radii, matrix elements, scattering states, and other
observables [3, 4, 5, 6]. The Argonne AV18 nucleon-nucleon interaction has small non-local
terms and a hard core. The use of correlated wave functions combined with Quantum Monte
Carlo (QMC) methods has provided highly accurate solutions of the ground state of many-body
nuclear systems [7].

The knowledge of the Equation of State (EoS) of pure neutron matter is an important bridge
from the nucleon-nucleon interaction to neutron-rich matter. The symmetry energy Esym is the
difference of nuclear matter and neutron matter energy and gives the energy cost of the isospin-
asymmetry in the homogeneous nucleonic matter. In the last few years the study of Esym has
received considerable attention (see for example Ref. [8] for a recent experimental/theoretical
review). The role of the symmetry energy is essential to understand the mechanism of stability
of very neutron-rich nuclei, and is also related to many phenomena occurring in neutron
stars. The number of protons per baryon, x, is determined by beta-equilibrium and charge
neutrality. These imply relationships between the chemical potentials and the symmetry energy,
μe = μn − μp ≈ 4Esym(1− 2x). Matter near the nuclear saturation density is very neutron-rich,
because electron degeneracy drives μn > μp. Thus neutron star matter is sensitive to Esym and
its first derivative. The inner crust of neutron stars, where the density is a fraction of nuclear
densities, is mostly composed of neutrons surrounding a matter made of extremely-neutron rich
nuclei that, depending on the density, may exhibit very different phases and properties. The
extremely rich phase diagram of crustal matter is strongly related to the role of Esym. For
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example, it governs the phase-transition between the crust and the core [9] and the nature of
r-mode instabilities [10, 11].

2. The Nuclear Hamiltonian and Quantum Monte Carlo
In our model, neutrons are non-relativistic point-like particles interacting via two- and three-
body forces:

H =
A∑
i=1

p2i
2m

+
∑
i<j

vij +
∑

i<j<k

vijk . (1)

The two body-potential that we use is the Argonne AV8′ [12], that is a simplified form of the
Argonne AV18 [1]. Although simpler to use in QMC calculations, AV8′ provides almost the
same accuracy as AV18 in fitting NN scattering data [13]. The three-body force is not as well
constrained as the NN interaction, but its inclusion in realistic nuclear Hamiltonians is important
to correctly describe the binding energy of light nuclei [2].

The Urbana IX (UIX) three-body force has been originally proposed in combination with the
Argonne AV18 and AV8′ [14]. Although it slightly underbinds the energy of light nuclei, it has
been extensively used to study the equation of state of nuclear and neutron matter [15, 16, 17].
The Illinois forces have been introduced to improve the description of both ground- and excited-
states of light nuclei, showing an excellent accuracy [2, 3], but it produces an unphysical
overbinding in pure neutron systems [18, 19].

Another interesting class of nucleon-nucleon potentials are derived within the chiral effective
field theory. Typically, these interactions have strong non-local terms, and as a consequence
they cannot be easily included in QMC calculations. Recently it has been showed that these
potentials can be designed to be local, and combined with QMC simulations [20]. However,
the need to include a cutoff to the nucleon’s momentum limits the applicability of chiral forces
to study dense neutron matter. The cutoff of these potentials can be controlled in a many-
body calculation [20], but the uncertainty is already quite large at saturation density in neutron
matter, making the calculation at larger densities unfeasible.

We solve the many-body ground-state with a projection in imaginary-time, i.e.:

Ψ(τ) = exp[−Hτ ]Ψv , (2)

where Ψv is a variational ansatz, and H is the Hamiltonian of the system. In the limit of τ → ∞,
Ψ approaches the ground-state of H. The evolution in imaginary-time is performed by sampling
configurations of the system using Monte Carlo techniques, and expectation values are evaluated
over the sampled configurations. The main difference between GFMC and AFDMC is in the way
that spin/isospin states are treated. In GFMC, all the spin/isospin states are explicitly included
in the variational wave function. The results obtained are very accurate but limited to the 12C [3]
or 16 neutrons [21]. The AFDMC method samples the spin/isospin states using the Hubbard-
Stratonovich transformation rather than simpling them explicitly [22]. The calculation can be
then extended up to many neutrons, making the simulation of homogeneous matter and heavy
nuclear systems possible [23]. The AFDMC has proven to be very accurate when compared
to GFMC calculation of energies of neutrons confined in an external potential [21]. We shall
present results obtained either using GFMC and AFDMC.

3. The Equation of State of Neutron Matter
In this section we present QMC results for pure neutron matter. There are several reasons to
focus on pure neutron matter. First, the three-body interaction is non-zero only in the T = 3/2
isospin-channel (T is the total isospin of three-nucleons), while in the presence of protons there
are also contributions in T = 1/2. The latter term is the dominant one in nuclei, and only
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Figure 1. The QMC equation of state of neutron matter for various Hamiltonians. The red
(lower) curve is obtained by including the NN (Argonne AV8′ ) alone in the calculation, and
the black one is obtained by adding the Urbana IX three-body force. The green and blue bands
correspond to EoSs giving the same Esym (32 and 33.7 MeV respectively), and are obtained by
using several models of three-neutron force. In the inset we show the value of L as a function
of Esym obtained by fitting the EoS. The figure is taken from Ref. [17].

weakly accessible by studying properties of nuclei. Second, the EoS of pure neutron matter is
closely related to the structure of neutron stars.

We present several EoSs obtained using different models of three-neutron force in Fig. 1. The
two solid lines correspond to the EoSs calculated using the NN potential alone and including
the UIX three-body force [14]. The effect of using different models of three-neutron force is
clear in the two bands, where the high density behavior is showed up to about 3ρ0. At such
high density, the various models giving the same symmetry energy at saturation produce an
uncertainty in the EoS of about 20 MeV. The EoS obtained using QMC can be conveniently fit
using the following functional [16]:

E(ρ) = a

(
ρ

ρ0

)α

+ b

(
ρ

ρ0

)β

, (3)

where E is the energy per neutron, ρ0 = 0.16 fm−3, and a, b, α and β are free parameters. The
parametrizations of the EoS obtained from different nuclear Hamiltonians is given in Ref. [17].

At ρ0 symmetric nuclear matter saturates, and we can extract the value of Esym and L
directly from the pure neutron matter EoS. The result of fitting the pure neutron matter EoS is
shown in the inset of Fig. 1. The error bars are obtained by taking the maximum and minimum
value of L for a given Esym, and the curves obtained with NN and NN+UIX are thus without
error bars. From the plot it is clear that within the models we consider, the correlation between
L and Esym is linear and quite strong.
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Figure 2. The mass-radius relation of neutron stars obtained from the EoS calculated using
QMC. The various colors represent the M − R result obtained from the corresponding EoSs
described in Fig. 1. The two horizontal lines show the value of M = 1.4 and 1.97(4)M� [24].
The figure is adapted from Ref. [17].

4. Connection to Neutron Star Masses and Radii
Neutron stars, unlike planets, are expected to be compositionally uniform, in which case their
radius is determined principally by their mass; to a good approximation all neutron stars lie on a
universal mass-radius M−R curve. When the EoS of the neutron star matter has been specified,
the structure of an idealized spherically-symmetric neutron star model can be calculated by
integrating the Tolman-Oppenheimer-Volkoff (TOV) equations.

The neutron star mass measurements which provide the strongest EoS constraints are those
which have the highest mass. Recent observations [24, 25] have found two neutron stars with
masses near 2 M�. These two data points provide some of the strongest constraints on the
nature of zero-temperature QCD above the nuclear saturation density. We begin by examining
what can be deduced about the M-R relation directly from these mass measurements, without
employing a separate model for high-density matter. For lower densities we use the EoS of
the crust obtained in Refs. [26] and [27]. For the core, we begin with the parameterization in
Eq. 3, employing maximally stiff EoS when the QMC models violate the causality and become
superluminal. The mass of a neutron star as a function of its radius is shown in Fig. 2. The
two bands correspond to the result obtained using the two sets of EoS giving the same value
of Esym indicated in the figure. As in the case of the EoS, it is clear that the main source of
uncertainty in the radius of a neutron star with M = 1.4M� is due to the uncertainty of Esym

rather than the model of the three-neutron force. The addition of a small proton fraction would
change the radius R only slightly [28, 15], smaller than other uncertainties in the EoS that we
have discussed. The numbers in the figure indicate the symmetry energy associated with the
various equations of state. In the figure we also indicate with the orange lines the density of the
neutron matter inside the star. Even at large masses the radius of the neutron star is mainly
governed by the equation of state of neutron matter between 1 and 2 ρ0 [29].

The AV8′ Hamiltonian alone does not support the recent observed neutron star with a mass
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of 1.97(4)M� [24]. However, adding a three-body force to AV8′ can provide sufficient repulsion
to be consistent with all of the constraints [17]. There is a clear correlation between neutron star
radii and the symmetry energy which determines the EoS of neutron matter between 1 and 2 ρ0.
The results in Fig. 2 also show that the most modern neutron matter EoS imply a maximum
neutron star radius not larger than about 13 km, unless a drastic repulsion sets in just above the
saturation density. This tends to rule out large values of L, typical of Walecka-type mean-field
models without higher-order meson couplings which can decrease L.

5. Bayesian Analysis of Neutron Star Masses and Radii
In contrast to the mass measurements described above, neutron star radius measurements have
proven more difficult, because they require both a distance measurement and some degree of
modeling of the neutron star X-ray spectrum. Low-mass X-ray binaries (LMXBs) are neutron
stars accreting matter from a low mass main-sequence or white dwarf companion. There are
two types of LMXB observations which have recently provided neutron star radius information.
The first type are LMXBs which exhibit photospheric radius expansion (PRE) X-ray bursts,
thermonuclear explosions strong enough to temporarily lift the surface (photosphere) of the
neutron star outwards [30, 31]. Several neutron stars have exhibited PRE X-ray bursts and four
which have have been used to infer the neutron star mass and radius are given in the left panel
of Fig. 3, using the methods described in Ref. [32]. The second type are quiescent LMXBs,
(QLMXBs), where the accretion from the companion has stopped, allowing observation of the
neutron star surface which has been heated by accretion [33]. A recent analysis of five neutron
stars [34] including the possibility of both hydrogen and helium atmospheres and distance
uncertainties is shown in the right panel of Fig. 3. Note that already from these two figures alone,
it is clear that these probability distributions favor neutron star radii near 11 km. Although
we will similar (R,M) distributions in our analysis below, it is important to remember that
there are several systematic uncertainties which are potentially important. For the QLMXBs,
the treatment of the X-ray absorption between the source and the observer, the flux calibration
of the observing satellite, and the method used to measure the distance all play important
roles. The situation for PRE X-ray bursts is even more challenging: complications such as
spherical asymmetry, the time evolution of the spectra, and the location of the photosphere at
“touchdown” may all modify the implied masses and radii.

Our goal is to constrain the EoS observational data described above, including the possibility
of phase transitions in matter above the nuclear saturation density. In order to do this, we
parametrize the EoS of matter at higher densities with a simple expression rich enough to include
exotic matter. We perform a Bayesian analysis using data from QLMXBs and neutron stars
which exhibit PRE bursts, where our model space is given by the EoS parameters and also one
parameter for the mass of each neutron star in the data set. Given an EoS, the TOV equations
provide the M-R curve and thus a prediction for the radius of each neutron star from its mass.
As described above, we always ensure that our EoS are causal, hydrodynamically stable, and
that our M-R curves support a 2 M� neutron stars. For densities near the saturation density, we
an EOS parametrized in terms of the symmetry energy and compressibility. At higher densities,
we describe matter either in terms of polytropes of the form P = K1ε

Γ, line-segments in the
P − ε plane, or a simple parameterization of quark matter. The final results for the M−R curve
and EoS are given in Fig. 4 from Ref. [35]. The M − R curve obtained is relatively vertical,
which naturally implies that almost all neutron stars have approximately the same radius. The
EoS obtained from the mass and radius observations is also in concordance with results from
quantum Monte Carlo and chiral effective theory described above and constraints obtained from
heavy-ion collisions.
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Figure 3. Left panel: Probability distributions in the mass-radius plane for four neutron stars
exhibiting PRE X-ray bursts. Colors are added together in RGB color space. Right panel:
Probability distributions in the mass-radius plane for five neutron stars in five globular clusters
from Ref. [34]. Colors are added together in RGB color space when necessary. The contour lines
outline the 90% confidence regions.
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Figure 4. (Left panel) A comparison of the predicted M–R relation with the observations.
The shaded regions outline the 68% and 95% confidences for the M–R relation. (Right panel)
The predicted pressure as a function of baryon density of neutron-star matter as obtained from
astrophysical observations. The region labeled “NS 68%” gives the 68% confidence limits and
the region labeled “NS 95 %” gives the 95% confidence limits. Results for neutron-star matter
from effective field theory [36] (see inset), from quantum Monte Carlo [17], and from constraints
inferred from heavy-ion collisions [37] are also shown for comparison.
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6. Determining the Density Dependence of the Symmetry Energy
In order to determine the symmetry energy, we use the parameterization of the neutron matter
EoS from the quantum Monte Carlo results in Eq. 3 above. With this parameterization the
symmetry energy at the saturation density Esym and the parameter which describes the density
dependence of the symmetry energy, L, are given by

Esym = a+ b+ 16 , L = 3 (aα+ bβ) . (4)

Neutron stars contain a small amount of protons, so we multiply the EoS by a small (∼ 10%)
and density-dependent correction factor which modifies the pressure. This correction factor is
obtained by averaging over Skyrme forces which give similar M-R curves to those suggested by
the data.

While we do not obtain significant constraints on a or α, the mass and radius data do
constrain the parameters b and β (Fig. 5). While the simple parametrization employed here
cannot fully describe the complexities of the nuclear three-body force, it does make it clear that
astrophysical data is beginning to rule out some three-body forces which might otherwise be
acceptable. We also show constraints on L. From neutron stars we obtain the constraints to
the symmetry energy and slope to be 32 < Esym < 34 MeV and 43 < L < 52 MeV within 68%
confidence. The only way to obtain a larger value of L is through a strong phase transition just
above the nuclear saturation density which tends to decouple the properties of matter at low-
and high-densities and allows for values of L as large as 83 MeV [35]. However, it is not clear
that such a strong phase transition at low densities is particularly realistic, as it might have
been already ruled out by experimental work in heavy-ion collisions as reviewed in Ref. [8].
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Kohley Z, Lemmon R, Möller P, Murakami T, Riordan S, Roca-Maza X, Sammarruca F, Steiner A W,
Vidaña I and Yennello S J 2012 Phys. Rev. C 86 015803

[9] Newton W G, Gearheart M and Li B A 2011 arXiv:1110.4043 (Preprint 1110.4043)
[10] Wen D H, Newton W G and Li B A 2012 Phys. Rev. C 85 025801
[11] Vidaña I 2012 Phys. Rev. C 85 045808
[12] Wiringa R B and Pieper S C 2002 Phys. Rev. Lett. 89 182501
[13] Gandolfi S, Carlson J, Reddy S, Steiner A W and Wiringa R B 2013 arXiv:1307.5815
[14] Pudliner B S, Pandharipande V R, Carlson J and Wiringa R B 1995 Phys. Rev. Lett. 74 4396
[15] Akmal A, Pandharipande V R and Ravenhall D G 1998 Phys. Rev. C 58 1804
[16] Gandolfi S, Illarionov A Y, Schmidt K E, Pederiva F and Fantoni S 2009 Phys. Rev. C 79 054005
[17] Gandolfi S, Carlson J and Reddy S 2012 Phys. Rev. C 85 032801
[18] Sarsa A, Fantoni S, Schmidt K E and Pederiva F 2003 Phys. Rev. C 68 024308
[19] Maris P, Vary J P, Gandolfi S, Carlson J and Pieper S C 2013 Phys. Rev. C 87(5) 054318
[20] Gezerlis A, Tews I, Epelbaum E, Gandolfi S, Hebeler K, Nogga A and Schwenk A 2013 Phys. Rev. Lett.

111(3) 032501
[21] Gandolfi S, Carlson J and Pieper S C 2011 Phys. Rev. Lett. 106 012501
[22] Schmidt K E and Fantoni S 1999 Phys. Lett. B 446 99
[23] Lonardoni D, Gandolfi S and Pederiva F 2013 Phys. Rev. C 87(4) 041303

Nuclear Physics in Astrophysics VI (NPA6) IOP Publishing
Journal of Physics: Conference Series 665 (2016) 012063 doi:10.1088/1742-6596/665/1/012063

7



1 2 3 4
0

1

2

3

4

Fiducial

No corr. unc.

Quarks

Quarks, no corr. unc.

b (MeV)

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

2.1 2.2 2.3 2.4

1

2

3

4

Fiducial

No corr. unc.

Quarks

Quarks, no corr. unc.

β

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

20 30 40 50 60 70 80 90 100110

1

2

3

4

5

6

Fiducial

Quarks

HIC

Masses

N skins

Polarizability

L (MeV)
Pr

ob
. D

is
t.

Figure 5. The left panel shows probability distributions of the parameters b and β obtained
from the Bayesian analysis. The right panel summarizes constraints on L from observations and
experiments. The top two curves show constraints on L as probability distributions assuming
either the fiducial model of Ref. [38] or the model containing quarks. The bottom four curves
show constraints on L from experiment, from neutron skins [39], nuclear masses [40], heavy-ion
collisions [41], and from the electric dipole polarizability [42].

[24] Demorest P B, Pennucci T, Ransom S M, Roberts M S E and Hessels J W T 2010 Nature 467 1081
[25] Antoniadis et al J 2013 Science 340 448
[26] Baym G, Pethick C and Sutherland P 1971 Astrophys. J. 170 299
[27] Negele J W and Vautherin D 1973 Nucl. Phys. A 207 298
[28] Gandolfi S, Illarionov A Y, Fantoni S, Miller J, Pederiva F and Schmidt K 2010 Mon. Not. R. Astron. Soc.

404 L35
[29] Lattimer J M and Prakash M 2001 Astrophys. J. 550 426
[30] van Paradijs J 1979 Astrophys. J. 234 609
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