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Abstract.
The 12C+12C fusion reaction is investigated using a folding potential in a multichannel

approach involving the 12C(0+
1 , 2

+, 0+
2 , 3

−) states. The 12C densities (including transition
densities) are taken from the RGM calculation of Kamimura. For the nucleon-nucleon
interaction, we use the DDM3Y density-dependent interaction. Owing to the explicit presence of
inelastic channels, the imaginary part of the optical potential only contains a short-range fusion
contribution. The S-factor is then virtually insensitive to the precise value, and the model is
free of any fitting parameter. From the coupled-channel system, we determine the elastic and
fusion cross sections simultaneously. As elastic data are available around the Coulomb barrier,
this simultaneous treatment offers a good test for the reliability of the model. In the fusion cross
section, the role of the inelastic channels and, in particular of the 12C(0+

1 )+12C(0+
2 ) channel

involving the Hoyle state, is discussed.

1. Introduction
The 12C+12C reaction plays an important role in stellar nucleosynthesis [1], and in particular
in the evolution of massive stars [2]. The extrapolation of the S-factor at low energies is made
difficult by the presence of resonances whose interpretation is not clear (see a recent review in
[2]). A recent work [3] suggests that excitations of 12C are important for a reliable determination
of the S factor. Most fusion calculations to date are performed in a single-channel model, i.e.
involving the 12C ground-state only, while the absorption is simulated by a phenomenological
imaginary potential [4]. In light systems, however, it is known that inelastic channels may be
important and require to be explicitly included in the calculation. In Ref. [3], the authors suggest
that mutual excitations play an important role even at low energies, where excited channels are
closed. At first sight, this effect may seem surprising since only a single channel is open. It is
explained by distortion effects in the wave functions: the cross section is mostly sensitive to the
inner part of the wave functions, where closed channels may have a significant amplitude.

The aim of our calculation is to investigate the 12C+12C fusion in a multichannel folding
method [5]. We include the 12C(0+1 , 2

+, 0+2 , 3
−) states and also the corresponding mutual

excitations. A folding method is performed using the density-dependent M3Y (DDM3Y)
interaction [7] to describe the nucleon-nucleon (NN) interaction, and 12C densities are taken
from the RGM values of Kamimura [6]. These densities (elastic and inelastic) are obtained
from a microscopic triple-alpha model, and are known to provide a precise description of many
scattering data. In particular, the 0+2 state of 12C is well described by the three-α microscopic
calculation of Kamimura, and is expected to play a significant role in the 12C+12C system [8].

Nuclear Physics in Astrophysics VI (NPA6) IOP Publishing
Journal of Physics: Conference Series 665 (2016) 012010 doi:10.1088/1742-6596/665/1/012010

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Another aspect that makes this work even more interesting is that the calculation is free of
parameter, except for a weak dependence on the absorption potential. It provides a simultaneous
description of elastic scattering and of fusion.

2. Theoretical framework
In a coupled-channel formalism, the 12C+12C potentials are defined as

Vα1α2,α′1α
′
2
(rrr) =

∫ ∫
drrr1drrr2 vNN (rrr − rrr1 + rrr2) ρ

α1α′1
1 (rrr1) ρ

α2α′2
2 (rrr2), (1)

where vNN (rrr) represents the nucleon-nucleon nuclear interaction, rrr = (r,Ωr) is the relative
coordinate, ραα

′
k (rrrk) are the 12C nuclear densities, and labels αk refer to different 12C states.

The same formalism is applied to the Coulomb interaction. In the present work, we include
12C(0+1 , 2

+, 0+2 , 3
−) states, which means that ten 12C+12C channels are introduced in the

coupled-channel system.
In practice, the evaluation of the double integral (1) is performed by using Fourier transforms

for the nuclear as well as for the Coulomb interactions [5]. The densities ραα
′

k (rrr) are taken from
the 3α microscopic calculation of Kamimura [6]. These densities, elastic (α = α′) as well as
inelastic (α 6= α′), are known to reproduce many experimental data.

As usual, the densities ραα
′

k (rrr) are expanded in multipoles [6], and the radial wave functions
gJπc (r) are obtained from the coupled-channel system

− h̄
2

2µ

[
d2

dr2
− `(`+ 1)

r2

]
gJπc (r) +

∑
c′

V Jπ
cc′ (r)gJπc′ (r) = (E − Ec1 − Ec2)gJπc (r), (2)

where µ is the reduced mass of the system, and Eci are the 12C energies. In this equation, label
c stands for c = (α1, α2, I, `), where I is the channel spin and ` the relative orbital momentum.

In this approach, the absorption to other channels is simulated by adding an imaginary
component to the potentials as (see Ref.[12] for details)

V Jπ
cc′ (r) −→ V Jπ

cc′ (r) + iW Jπ
cc′ (r). (3)

In the present calculation, the coupled-channel system (2) explicitly includes inelastic channels
in a wide energy range. To define the fusion component of the potential, a short-range absorption
potential [11] is included as

Wcc′(r) = − W0

1 + exp((r −R0)/a)
δcc′ . (4)

The range R0 is chosen smaller than the barrier radius, and this potential acts at short distances
only. In this multichannel calculation, the values were taken as W0 = 10 MeV, R0 = 3 fm, and
a = 0.1 fm, and the same conditions were employed to investigate the elastic-scattering and
fusion processes. The calculation are stable within 1− 2% when these parameters are modified.
An important consequence is that the model is free of parameters, and that all cross sections
are obtained without any adjustment.

The coupled-channel system (2) is solved with the R-matrix method [9]. In the internal region
(r ≤ a), the radial functions gJπc (r) are expanded over a Lagrange basis [10]. In the external
region, they are given by linear combinations of Coulomb functions. The matching provides the
collision matrix UUUJπ. Notice that, at low energies, most of 12C+12C excited channels are closed
(the first open channel is 12C(0+1 )+12C(2+) which opens at 4.44 MeV).
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The elastic cross sections are computed from the collision matrices by using standard formulas
[4]. The fusion cross section is defined as [13]

σF (E) =
2π

k2

∑
J even

(2J + 1)PJ(E), (5)

where k is the wave number, and where the fusion probability PJ(E) is obtained from

PJ(E) = − 2

h̄v

∑
c

∫
|gJπc (r)|2Wcc(r) dr, (6)

where v is the relative velocity [4].
At low energies, the fusion and reaction cross sections are identical, and PJ(E) can be

expressed as

PJ(E) = 1− |UJ11|2, (7)

where UJ11 is the elastic element of the collision matrix, associated with the 12C+12C ground-state
channel.

For the 12C+12C reaction, the fusion cross section is traditionally converted in a modified S
factor as

S̃(E) = σF (E)E exp(2πη + 0.46E), (8)

where η is the Sommerfeld parameter. The linear term in the exponential accounts for an
additional energy dependence (E is expressed in MeV).

3. Results and Discussions
The present folding model was first applied to 12C+12C elastic scattering at energies around
the Coulomb barrier, where experimental data are available [14]. Thus, the idea was to assess
the accuracy of the model, which is well known experimentally at energies close to the Coulomb
barrier [14], and then apply it to the calculation of fusion cross sections. The procedure was
started from a single-channel approximation, and we progressively included additional channels.

The comparison between theory and experiment is presented in Fig.1. When the energy
increases, and in particular at E = 10 MeV, inelastic channels significantly improve the
theoretical cross section. At 6 MeV, the physics of the problem is essentially determined by
the Coulomb interaction, and the role of the inelastic channels is hardly visible. The most
sensitive angular range is beyond θ = 70◦, where the single-channel approximation provides a
poor fit of the data. Including the 2+ state improves the overall agreement, but adding further
the 0+2 Hoyle state provides an excellent agreement with the data. Note that good fits can be
obtained even in the single-channel approximation [15], but after fitting the imaginary potential
to optimize the agreement with experiment. The same behavior is observed at higher energies,
i. e., the inclusion of the Hoyle state in the calculation significantly improves the agreement
with experiment (see Figure in Ref. [16]). Most likely, breakup channels start playing a role at
these energies, and the imaginary potential should be adapted.

The modified S factor is displayed in Fig.2, where the experimental data have been corrected
as suggested by Aguilera et al. [25]. Above the Coulomb barrier (≈ 6.5 MeV) the data are well
reproduced by the calculation, and the role of inelastic channels is minor. When the energy
decreases, the sensitivity with respect to the number of excited channels is more and more
important, in agreement with Ref.[3]. At E = 1 MeV, the multichannel calculation provides
an enhancement of about a factor of three, in comparison with the single-channel approach.
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Figure 1. Ratios of the elastic and Rutherford cross sections around the Coulomb barrier,
for increasing numbers of 12C+12C inelastic channels. Labels correspond to c. m. energies.
Experimental data are from Ref.[14].
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Figure 2. (Color online). Modified S factor (8) for increasing numbers of 12C+12C inelastic
channels (the curves are as in Fig.1). Experimental data are taken from Refs.[17–26].

Of course, fluctuations are absent from the present theory. Although molecular resonances are
predicted by the calculation with a real potential, they are strongly hindered by the absorption
part of the potential.

The interpretation of the theoretical S factor can be seen in Fig.3 through a decomposition
in angular momenta J (upper panel) and in the various channels (lower panel). The fusion cross
section is essentially given by the contribution of J = 0+ and J = 2+; J = 4+ provides less than
10 %, and other partial waves are negligible. The contributions of the different channels confirm
that the fusion cross sections are strongly affected by inelastic channels. These channels are
closed at low energies, but the corresponding wave functions gJπc (r) have a significant amplitude
in the inner region. Even if they tend to zero at large distances, the short-range potential
W (r) makes integrals (6) sensitive to the inner part of the wave function only. Consequently
the contribution of inelastic channels to the fusion cross section (5) may be important, and
even larger than the ground-state contribution. The role of the Hoyle state is supported by the
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importance of the 12C(0+1 )+12C(0+2 ) channel, which is even dominant above 3.5 MeV.
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Figure 3. Decompositions of the modified S factor (8) in partial waves (upper panel), and in
the main channel contributions (lower panel).

4. Conclusion
In the present work, the 12C+12C fusion process was investigated in a multichannel model. The
coupling potentials are generated from 12C densities obtained in a microscopic cluster model.
The calculation does not contain any fitting parameter, and provides simultaneously the fusion
and elastic cross sections. Around the Coulomb barrier the elastic data are well reproduced by
the model provided that all inelastic channels, and in particular those involving the 0+2 state,
are included. The results confirm the conclusion of Ref.[3], i.e. that inelastic channels play an
important role, and must be taken into account for a precise description of the fusion cross
section.
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