
Large-Scale Merging of Histograms using Distributed

In-Memory Computing

Jakob Blomer and Gerardo Ganis

CERN, Geneva, Switzerland

E-mail: jblomer@cern.ch

Abstract. Most high-energy physics analysis jobs are embarrassingly parallel except for the
final merging of the output objects, which are typically histograms. Currently, the merging of
output histograms scales badly. The running time for distributed merging depends not only
on the overall number of bins but also on the number partial histogram output files. That
means, while the time to analyze data decreases linearly with the number of worker nodes, the
time to merge the histograms in fact increases with the number of worker nodes. On the grid,
merging jobs that take a few hours are not unusual. In order to improve the situation, we
present a distributed and decentral merging algorithm whose running time is independent of
the number of worker nodes. We exploit full bisection bandwidth of local networks and we keep
all intermediate results in memory. We present benchmarks from an implementation using the
parallel ROOT facility (PROOF) and RAMCloud, a distributed key-value store that keeps all
data in DRAM.

1. Introduction
While computer hardware systems and micro chips provide ever-growing degrees of parallelism,
it is increasingly difficult to develop software systems that exploit the available peak performance
from the beginning to the end of a computing workflow. The problem that even small
sequential parts can dominate the running time of an otherwise perfectly parallel workflow
is, for instance, described by the well-known Amdahl law. We often associate Amdahl’s law with
the programming of multi-threaded applications but similar effects also arise when we scale up
the number of worker nodes that participate in the execution of a distributed workflow.

The merging of output histograms at the end of a data analysis job can be a particular
tough case. Listing 1 shows pseudo code for a typical analysis workflow. The analysis itself is
usually very well parallelizable through independent tasks that work on different subsets of the
input events; thus the analysis step often shows a linear speedup even up to a large number
of thousands of worker nodes. The merging of the partial output histograms created on every
worker node, on the other hand, shows the reverse scaling behavior. The more worker nodes we
add, the more data we need to merge into the final set of output histograms. Unlike the analysis
itself, the size of the merging problem is not a function of the amount of input data but it is
given by the overall number of bins that get filled multiplied by the number of worker nodes.

In extreme (but real) cases the analysis might be performed in a few minutes while the
merging of the output histograms takes hours. In such cases, the size of the output histograms
can be on the order of gigabytes, which every worker nodes sends to a single or a few nodes
responsible for the merging. Large turn-around times prevent users from previewing analysis

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092003 doi:10.1088/1742-6596/664/9/092003

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

results, for instance in a phase when the analysis task is still being developed. They also inhibit
use cases that require fast response times, for instance the detector calibration necessary for a
first reconstruction pass.

In this contribution, we will present an approach that is symmetric with respect to sending
data and retrieving data: the merging phase will involve each and every worker node in the task
of merging. Thus the time to merge histograms becomes largely independent of the number
of worker nodes. The more worker nodes, the more resources contribute to the final merging
phase. This assumes that the network itself does not become a bottleneck but that all nodes
can send and receive data at high speed at the same time (the network has a high bisection
bandwidth). As a means to store and merge histograms in a distributed manner, we will use a
slightly modified version of RAMCloud [1, 2], an open source, fast, and distributed key-value
store that keeps all data in DRAM.

Listing 1. A typical data analysis workflow.

for a l l events do
for a l l j e t s do

for a l l p a r t i c l e s with p r op e r t i e s do
value = Cor r e l a t i on (. . .)
F i l lH i s togram (histogram , value)
. . .

for a l l h i stograms
Merge (histogram)

The remainder of the paper is structured as follows: Section 2 describes our distributed
merging algorithm. Section 3 describes the implementation details. Section 4 presents the
benchmark results based on a large, real-world use case. Sections 5 and 6 discuss related work
and summarize the contribution.

2. A peer-to-peer approach to merging
At the end of the data analysis step, we are in a situation in which every worker node has created
partial sums for the bins of all the output histograms. With a single or only a few mergers, the
merging is asymmetric and the merger(s) become a bottleneck as the number of worker nodes
increases. Instead, we can make every worker node responsible for a small subset of the final set
of output histograms.

To do so, we represent every histogram as key-value pairs in a hash map. This can be
done for all histograms, even multi-dimensional and sparse ones, provided that the binning is
known upfront. With a known binning, every bin can be assigned a global bin number, simply
by unrolling the dimensions of the histogram. A unique key for every bin in a set of output
histograms can then be constructed by concatenating a histogram identifier and the global bin
number. The value of the key-value pair consists of two floating point numbers representing the
bin value and the bin error.

Having the output histograms represented as a hash map makes it easy to distribute them
uniformly to worker nodes using a distributed hash table (DHT). Thus, at the end of the data
analysis, we span a distributed hash table among the worker nodes. All the n worker nodes
send the bin contents of their partially filled histograms to the other worker nodes, using the bin
partitioning imposed by the DHT. At the same time, worker nodes receive bin contents from
all other worker nodes for ≈ 1/n of all the available bins. Figure 1 compares the naive approach
and the peer-to-peer approach to merging.

For performance reasons, the DHT implementation not only has to be capable of storing and
retrieving key-value pairs, but also of the summation of bin contents. That allows for sending
batches of bin contents to other worker nodes. Otherwise the addition of every bin would require
an atomic get value – modify value – store value cycle between worker nodes. For example,

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092003 doi:10.1088/1742-6596/664/9/092003

2

Figure 1. Naive merging with a single merger compared to a peer-to-peer approach to merging.
Bins are visualized by colored boxes.

Worker nodes filling bins ∎∎∎∎∎∎

∎∎∎∎∎∎∎∎∎∎∎∎

∎∎∎∎∎∎

∎∎∎∎∎∎ ∎∎∎∎∎∎

∎∎∎∎∎∎

Worker nodes filling bins ∎∎∎∎∎∎

∎∎

∎

∎ ∎

∎

worker node α might send (42, (v,w))—the value v and the sum of squares of weights w (which is
used to calculate the bin error) for bin number 42 to worker node β for merging. At worker node
β, there is already an entry (42, (v′,w′)). Worker node β will then store (42, (v′ + v,w′ +w)).

In a last step, all the merged bins on all the worker nodes are enumerated to read out the
histograms into a single file. This is different from having just a single merger node in the first
place, because the readout size after merging is already reduced. For instance, if 10 worker
nodes produce a 100 MB set of output histograms each, the final readout needs to read some
10 MB from each worker node and not 100 MB as in the case of a single merger node.

Note that this merging algorithm would represent the “shuffle-exchange” step in a MapReduce
formulation of the problem [3], provided that every worker node would run a so-called reduce
task.

3. Implementation
As a distributed key-value store used to merge the bins on the worker nodes, we use a slightly
modified version of the RAMCloud open source system. RAMCloud keeps all data in memory
and provides exceptionally small latencies down to 5µs per request over InfiniBand. If requests
are batched, RAMCloud’s remote procedure call implementation sustains hundreds of thousands
of requests per second and node over 1 GbE TCP/IP networks.

RAMCloud stores objects, which are key-value pairs. Keys typically are a few bytes in size,
and values are typically a few hundred bytes in size. Objects are grouped in tables. A table can
act as a DHT, i. e. the key-value pairs of a table can be uniformly distributed over an arbitrary
number of nodes. We use a single table to store all the bins of all the output histograms of an
analysis workflow, as described in Section 2.

From the point of view of deployment, RAMCloud compiles from C++ sources into a few
binaries. In order to run a cluster, there needs to be a coordinator process that maintains the
cluster membership and the table definitions. All the nodes run a master process that manages
a share of DRAM on the node and that processes storage and retrieval requests from other
nodes. In a fault-tolerant setup, every node also runs a backup process for data replication and
recovery tasks. In our use case we omit the backup processes.

RAMCloud comes with a client library and several language bindings (C, C++, Python,
Java). The client library can be used to connect to a cluster, create and delete tables, and to
store and retrieve objects. The internals of the network processing, selection of the master node
according to the object’s key, batching of requests, and so on are hidden from the user.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092003 doi:10.1088/1742-6596/664/9/092003

3

3.1. Customizations
Our own additions and modifications needed for a proof-of-concept are modest. In addition to
the standard requests (put, get, enumerate, . . .), we added a type of request specifically for the
merging of the bin content and the bin error. Instead of just storing the value of an object, this
request type interprets the object’s value as floating point numbers and, if an object with the
same key already exists, atomically sums up the values. For better performance, we increased
maximum number of objects in a batched request from the default value to 2000. Using the
client library, we implemented two small utilities: the first utility reads a ROOT file [4, 5],
extracts all the histograms, and merges their content on RAMCloud. The second utility reads
out the merged bins by enumerating all the objects in a table.

4. Experimental Setup and Benchmarks
As a real-world benchmark, we were kindly provided with a 175 MB ROOT file which contains
the output histograms from an ALICE data quality assurance task. This (merged) ROOT file
comprises some 12 000 one dimensional, two dimensional, and three dimensional histograms with
around 19 million filled (non-zero) bins. Creating this file on the grid with a few thousand job
slots involves multiple merge phases, and depending on the usage of the grid these merge phase
can sum up to a couple of hours.

Here, we measure the merging time as a function of the number of worker nodes. To do so,
we pre-place the ROOT file in memory on all the benchmark nodes1. We compare the time it
takes to read the ROOT file, merge the results in RAMCloud, and read-out the merged bins
with the time it takes to merge the histograms with PROOF, the parallel ROOT facility [6, 7].
In both cases, we are only interested in the difference when adding whole nodes; we assume that
for nodes providing multiple analysis slots, a local merging step on the results has already been
done. Such a local merging step can be done in less than a minute.

4.1. Benchmark Cluster
The benchmark cluster comprises 29 machines that are connected by a 1 GbE TCP/IP network.
The switching capacity of the Ethernet switch connecting the nodes is 10 Gbit. The machines
have 8 core Xeon E5450 CPUs at 3 GHz and 16 GB RAM each. They run Scientific Linux 6.
We used ROOT/PROOF version 5.34/26 and our slightly modified version of RAMCloud as
available in the source code repository by the end of March 2015.

4.2. Results
Figure 2 shows the scaling of the merging task as a function of the number of nodes. PROOF
is benchmarked in two modes. A “plain” mode with a single merger represents many practical
setups, including the grid scenario. The second mode uses a feature called “sub mergers” that
uses two phases for merging with

√

n worker nodes as mergers in the first phase. Sub mergers
were introduced in PROOF in 2011 with the aim to speed-up merging when the output is
composed by a large number of objects whose size does not depend on the number of entries or
processing time (e. g. for histograms).

As expected, the scaling with a single merger is linear in the number of worker nodes. One
can extrapolate that the merging time reaches the order of hours as the number of worker nodes
reaches the order of thousands. In the smarter merging mode with sub mergers, the merging
times scales proportionally to

√

n. The merging time for a large number of worker nodes is
largely reduced and extrapolates to some 15 min for 1 000 worker nodes.

1 Merging these identical files which are already the final result of a merging process does not make sense from
the physics point of view, but for the sake of the benchmark this file represents an upper bound for the size
(in number of non-zero bins) of the output histograms that could possibly be produced during the real quality
assurance task.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092003 doi:10.1088/1742-6596/664/9/092003

4

Figure 2. Scaling of the merging task as a function of the number of nodes. All PROOF
numbers include 15 s transfer time of results from the master node to the client.

Number of nodes
0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

]

0

100

200

300

400
PROOF plain (like Grid)
PROOF sub-merger
RAMCloud

 0.03 s/node±Slope = 12.13

n t proportional to ∆
 0.18 s/node±Slope = 0.61

n=100: 21.0 min
n=100: 5.4 min
n=100: 2.5 min

The scaling behavior of the merging with RAMCloud is almost flat. Running times are shorter
than in the two other cases. Extrapolated to 1 000 nodes the merging time is around 10 min. It
should be noted that at this scale scaling issues of the underlying Ethernet and TCP/IP stack
could become relevant.

Figure 3 explains in part the remaining small dependence on the number of worker nodes
in the RAMCloud results. The overall merging time is broken down into the actual merging
time and the time to readout the bins from all the worker nodes. It turns out that most of
the linear contribution comes from the read-out. This is due to the fact that the RAMCloud
table enumeration queries master nodes one after the other. This does not seem to be a
fundamental issue: one could imagine full table enumeration that queries all master nodes in
parallel. Assuming that the linear contribution to the scaling coming from the read-out phase
could be removed, an overall merging time with 1 000 worker nodes of under 2 minutes seems
reachable.

5. Related Work
While histograms are in general widely used to analyze large data sets (“BigData”), in high
energy physics histograms are specifically ubiquitous. The HEP community has high demands
on the features provided by a histogram implementation and on the ability to handle a large
number of histograms with many bins.

The Hadoop [8] MapReduce implementation has a simple implementation of histograms but
is lacking support for multi-dimensional histograms or errors of bins. While the merging of
histograms is already available, it would require to port the entire computing workflow on the
Hadoop platform.

The HistogramTools package for R [9] supports serialization of histograms which facilitates
using them in a distributed environment such as MapReduce. However, also the HistogramTools
package supports only one dimensional histograms with integer values and without bin errors.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092003 doi:10.1088/1742-6596/664/9/092003

5

Figure 3. Detailed view on the RAMCloud scaling.

Number of nodes
0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

]

0

50

100

150

200

250 Sum
Merging
Readout

 0.18 s/node±Slope = 0.61
 0.20 s/node [270k - 315k bins/s]±Slope = 0.18
 0.05 s/node±Slope = 0.55

 [960k bins/s + 0.37s per GB of hash table per node]

6. Conclusion
We have shown a proof-of-concept implementation of histogram merging whose merging time
is almost constant with a growing number of worker nodes. Our benchmark results suggest
that there is significant room for speed-up when merging large histograms from many worker
nodes. As a follow-up to this work, we will investigate how this approach can be integrated in
the existing HEP tool chain, for instance in PROOF. It would be interesting to see if a similar
method can be used for merging ROOT trees, for instance by distributing branches to worker
nodes.

Acknowledgments
We would like to thank John Ousterhout and the RAMCloud team at Stanford University for
hosting one of the authors and for numerous suggestions and stimulating discussions. We would
like to thank Mihaela Gheata from the ALICE experiment for kindly providing us the output
histograms of a data quality assurance task.

References
[1] Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazières D, Mitra S, Narayanan A, Ongaro

D, Parulkar G, Rosenblum M, Rumble S M, Stratmann E and Stutsman R 2011 Communications of the
ACM 54 121–130

[2] RAMCloud https://ramcloud.stanford.edu/

[3] Dean J and Ghemawa S 2008 Communications of the ACM 51 107–114
[4] Brun R and Rademakers F 1997 Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment A 389 81–86
[5] Naumann A, Brun R et al. 2009 Computer Physics Communications 180 2499–2512
[6] ROOT: A C++ framework for petabyte data storage s a, visualization I Antcheva, Ballintijn M, Bellenot B,

Biskup M, Brun R, Buncic N, Canal P, Casadei D, Couet O, Fine V, Franco L, Ganis G, Gheata A, Maline
D G, Goto M, Iwaszkiewicz J, Kreshuk A, Segura D M, Maunder R, Moneta L, Naumann A, Offermann
E, Onuchin V, Panacek S, Rademakers F, Russo P and Tadel M 2011 Computer Physics Communications
182 1384–1385

[7] PROOF https://root.cern.ch/drupal/content/proof

[8] White T 2009 Hadoop: The Definitive Guide. (O’Reilly)
[9] 2014 R HistogramTools package http://cran.r-project.org/web/packages/HistogramTools/

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092003 doi:10.1088/1742-6596/664/9/092003

6

