

Developments and applications of DAQ framework DABC v2

J Adamczewski-Musch
1
, N Kurz

1
 and S Linev

1,2

1
Data processing group, Electronics department (RBEE), GSI Helmholtz-Zentrum für

Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany

E-mail: j.adamczewski@gsi.de, n.kurz@gsi.de, s.linev@gsi.de

Abstract. The Data Acquisition Backbone Core (DABC) is a software framework for

distributed data acquisition. In 2013 Version 2 of DABC has been released with several

improvements. For monitoring and control, an HTTP web server and a proprietary command

channel socket have been provided. Web browser GUIs have been implemented for

configuration and control of DABC and MBS DAQ nodes via such HTTP server. Several

specific plug-ins, for example interfacing PEXOR/KINPEX optical readout PCIe boards, or

HADES trbnet input and hld file output, have been further developed. In 2014, DABC v2 was

applied for production data taking of the HADES collaboration's pion beam time at GSI. It

fully replaced the functionality of the previous event builder software and added new features

concerning online monitoring.

1. Introduction

The Data Acquisition Backbone Core (DABC) is a C++ software framework that can implement and

run various data acquisition solutions on Linux platforms [1]. In 2013 Version 2 of DABC has been

released with several improvements. These developments have taken into account lots of practical

experiences of DABC v1 with detector test beams and laboratory set-ups since first release in 2009.

The plug-in interfaces for user code and configuration procedures have been simplified. Internally

the framework has been enhanced by means of smart references and object cleanup mechanisms. As a

new feature, an HTTP web server component has been implemented that allows monitoring process

variables, and execute commands in the DABC runtime environment.

The existing DABC data input from standard GSI PEXOR/KINPEX PCIe readout hardware has

also been refactored for such framework changes. Additionally, it has been extended by a triggered

data acquisition mode, emulating the behavior of the previously applied DAQ system MBS. A special

web browser GUI to control this DAQ set-up has been implemented in JavaScript, using the new

DABC web server access. By means of an intermediate DABC application, it is even possible to

control a native MBS node from a web browser with a similar GUI.

From May to September 2014, DABC v2 was applied for production data taking of the HADES

collaboration's pion beam times at GSI. It step by step replaced the functionality of the previous

HADES event builder software hadaq. Moreover, DABC offers advanced possibilities here for online

quality analysis of data samples via TCP/IP sockets, and monitoring of run variables via HTTP

servers.

2
 To whom any correspondence should be addressed.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2. PEXOR/KINPEX readout

GSI standard DAQ systems often use PCI express boards PEXOR/KINPEX that receive data via

optical fiber GOSIP protocol [2] from various types of front-end hardware. Corresponding drivers and

DABC plug-ins had been developed [3] for control and data acquisition of such systems on Linux

PCs. For DABC v2 this software has been upgraded, taking into account simplifications of the DABC

framework application programmers interface (API), and implementing additional functionalities for

triggered read-out and advanced set-up.

Figure 1 shows a sketch of the readout hardware and the software entities. The PEXOR/KINPEX

board is plugged to the PCIe slot of the readout computer with Linux operating system. Various

digitizing front-end boards, e.g. ADC, TDC, or QFW, are linked to PEXOR with up to 4 chains of

optical fibers. Access to the hardware from the operating system is provided by kernel module device

driver pexor.ko with corresponding C++ library libpexor.so. A new command line tool gosipcmd

allows low level configuration and register I/O concurrent to the data acquisition process. The DABC

plug-in is also based on the libpexor.so driver library, as described in [3].

The originally monolithic DABC v.1 plug-in has now been split into a hierarchical structure with

base class and well defined user subclass API. From several DAQ use-cases it turned out that any

specific code would need direct access to front-end registers, because otherwise initialization at startup

is not possible. Also during read out, a direct communication with frontend hardware is sometimes

desirable, independent of the generic mechanisms with GOSIP token request DMA. So the natural

DABC class for such partitioning is Device, since neither ReadoutModule nor Input (Transport)

classes have access to the Board instance of the driver library [3].

Figure 1. DABC PEXOR/KINPEX and frontend readout hardware and corresponding software components:

linux kernel driver, library and command line tool provide access to PEXOR functionality. The DABC plug-

ins are structured in a way that generic actions are delivered by Device base class, frontend specific actions to

be handled by additional sub-class plug-ins .

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

2

The base class pexorplugin::Device (Figure 1) keeps all relevant methods to communicate with

PEXOR and perform data read out. It implements the forwarded dabc::DataInput interfaces, such as

Read_Size(), Read_Start(), and Read_Complete() [3]. By default, they handle triggered or non-

triggered GOSIP token request readout, depending on the DABC setup parameters. The frontend

subclasses of Device may even overwrite these methods to implement a different readout behavior.

However, for most use cases it is sufficient to touch a few dedicated interface methods only to achieve

all frontend- or experiment-specific parts. In Figure 1, for example, subclasses explodertest::Device

and poland::Device will redefine virtual methods InitDaq() and UserReadout() to adjust specific

functionality.

As a new feature the pexor driver for DABC now fully supports triggered data acquisition modes,

using interrupts from the TRIXOR board attached to PEXOR. So it is possible to emulate with DABC

the same read out as with the GSI production DAQ system MBS [4] at a single data receiving node,

and compare mechanisms and performance of both systems. For this purpose additional virtual

methods StartAcquisition() and StopAcquisition() have been implemented to pexorplugin::Device.

Like the homonymous MBS commands, these functions by default raise special software trigger

interrupts (id 14 and 15) which are evaluated in the driver layer to insert marker events to the data

stream, and to change acquisition state. Moreover, they also can be extended or completely re-

implemented in the Device subclass. Functions StartAcquisition(), StopAcquisition() and InitDaq() can

be invoked interactively from the web control interface with corresponding DABC commands defined

in pexorplugin::Device. Because of this any specialized frontend behavior can be controlled with

generic commands.

From first tests of triggered read-out it turned out that DABC with PEXOR/KINPEX plug-in can

achieve similar performance as an MBS system with identical hardware. Moreover, DABC provides

another “automatic” trigger readout mode where data is acquired from the frontends already in the

trigger interrupt handler and buffered in a kernel module queue before passed to the application. This

mode promises even better throughput with lower latency per event, since trigger acknowledgement

and subsequent data readout request does not require to be handled intermediately by the userspace

application anymore. Further systematic performance tests of such readout modes in comparison with

MBS are planned for this year.

3. Web server controls

Any data acquisition system requires some kind of control system that allows at least inspecting the

run state of the acquisition and some variables of interest, like event building rates, amounts of stored

data, or log messages. Moreover, it might be useful to change acquisition states, output file names, and

other setup parameters interactively by means of such slow control command access. For DABC v1,

previously the DIM or EPICS systems had been evaluated for this purpose. However, such a

proprietary control protocol has the disadvantage that it needs special client software to be installed on

all nodes that want to access and view the exported information. Because of this, for DABC v2 a more

common interface has been intended, with GUI clients available on nearly any platform: an HTTP web

server.

These developments were closely related to a similar approach for online monitoring of the ROOT

analysis system [5]. Here any ROOT data object can be converted into JavaScript Object Notation

(JSON) format and is accessible via an embedded HTTP server that provides a generic JavaScript

visualization for any web browser. By default the hierarchy of exported objects and process variables

is displayed in a tree view representation. Selecting a tree item in the browser will draw the selected

object in a predefined way, or will show details of a variable. Moreover, using the full object path in

the URL, it is possible to retrieve any exported object values directly from JavaScript code in the

browser, or from HTTP command line tools in scripts.

The features of such a ROOT web server interface have been embedded into DABC and extended

to export and visualize special DABC parameters like rate meters, and to invoke DABC command

callbacks via HTTP requests. In addition to this, one DABC node (master) may also combine the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

3

object hierarchies of several distributed nodes (agents) and can make them accessible as a super-

hierarchy at a single HTTP server [5]. These distributed hierarchies can be either linked to the master

via dedicated DABC sockets, or via their own HTTP server, or by means of DABC plug-ins for

external DAQ or control systems. Therefore one DABC webserver can act as gateway to integrate and

access data objects and control variables from different sources, such as DABC, ROOT, Go4, MBS,

EPICS, DIM, and FESA. As a consequence, the user could monitor both the data acquisition controls,

and the online analysis results in a web browser at the same HTTP server.

Figure 2. Heterogeneous distributed application control with DABC: The master process integrates object

hierarchies of various agents and provides access at a single HTTP server. See text for details.

Figure 2 illustrates an example of a distributed set-up: the master process is linked via sockets of a

specific plug-in to an MBS data acquisition node. This allows monitoring and control of such external

DAQ system by means of the DABC web server. Additionally, another DABC HADES DAQ node

and a Go4 analysis node are connected to the master via native DABC control sockets. The combined

node hierarchy is delivered both at the master’s HTTP server, and at a native DABC control socket.

The latter may be applied for another level of hierarchy integration at a “super master”.

The standard DABC web server delivers a JavaScript/jquery.ui GUI that offers to browse the entire

object hierarchy in a tree view and display or even modify any object in its predefined way. Based on

such a JavaScript API, any DABC plug-in may provide a more specialized browser GUI, tailored for

the control requirements of the application. Extension hooks in the DABC web hierarchy allow to

display this user defined GUI together with the standard GUI, i.e. clicking a special item in the

hierarchy browser, or choosing the appropriate URL path as browser address, will display the specific

GUI. Figure 3 contains a screenshot of a user defined browser GUI, as developed for the

PEXOR/KINPEX plug-in. All relevant commands are represented as buttons. If clicked, an HTTP

request will invoke the command at the web server. The control buttons are grouped in sections for

generic DABC commands (configure, start, stop, shutdown), PEXOR specific commands

(StartAcquisition, StopAcquisition, InitDaq), data taking commands (open/close file), and GOSIP

commands for direct register access to the frontend electronics. DABC messages and command results

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

4

are shown in text fields at the appropriate browser division. Additionally, event and data rates are

drawn as gauge or trending graphs. Refresh frequency for monitoring such variables is adjustable in

another control field.

Figure 3. Example of a user-defined browser GUI in DABC as written for the PEXOR plug-in. See text for

details.

4. Application for HADES experiment

The HADES experiment has one of the largest detector set-ups at GSI with about 30 sub-detector units

[6]. Their data are read out via Gbit Ethernet connections with the trbnet format, then combined and

stored by means of 4 Linux-based event builder computers.

For several test set-ups, a DABC plug-in had already been developed that could receive and

combine such trbnet data packets via UDP connections [7]. These developments have been completed

to cover the full functionality of the previous HADES event building software. This includes

interfacing the EPICS based HADES control system, the ORACLE run statistic data base, and the

RFIO tape storage of GSI. Initialization procedures of the DABC event builder processes have been

fully integrated into the existing HADES DAQ configuration. Moreover, by means of DABC stream

server socket the connection to HADES online quality monitoring analysis could be improved.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

5

Figure 4. HADES data acquisition and quality monitoring with DABC event

builders.

Figure 4 shows the HADES data acquisition and online monitoring components with DABC.

About 30 TRB front-end hubs send sub-event data to each of 16 DABC event builder processes in a

round robin scheme. Each event builder writes full event data in hld file format both to an array of

local hard disks, and via Gbit Ethernet sockets to the RFIO tape library of GSI. Additionally, one event

builder provides a sample of the event data for a HYDRA2 quality analysis (QA) with a live

monitoring display. The previous hadaq event builders had realized such samples by writing

temporary hld files to be read back by the QA process via an NFS mounted hard disk. With DABC,

event data samples are now delivered to the QA client via an “MBS stream server” TCP/IP socket.

Several different analysis clients could connect to this server and can receive the same event samples

simultaneously. The existing EPICS control GUI and run synchronisation system has been interfaced

via shared memory to DABC in the same way as the previous event building software hadaq.

Moreover, the existing start-up scripts have been extended in a way that each event builder process can

run either DABC or hadaq with the same settings. So it is possible to operate the DAQ with “mixed”

event builders (DABC and hadaq). Furthermore, DABC log output has been attached to the HADES

syslogd -based logging facility. A data taking “run statistics” interface to an ORACLE data base has

also been implemented in DABC, alike in hadaq event builders, by means of intermediate text files.

In 2014 DABC was applied for data taking of beam times at HADES experiment. With a proton

beam in May 2014 and a pion beam in July 2014, for the first time one of 16 event builder processes

ran with DABC, all others still with previous hadaq software. Finally with a pion beam in September

2014, DABC was running all event builders. Here 29 frontend systems usually fed 3 active event

builder processes at typical pion beam event rates of < 2 kHz average. The performance limit of this

system with full disk and tape file output has been measured with a 25 kHz pulsed trigger. In this test

each event builder could handle data rates of 38Mbyte/s without data loss at the UDP transport layer.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

6

Figure 5. HADES event building topology: exisiting (left) and planned (right).

The next HADES DAQ upgrade is going to integrate numerous new TRB3 front-end boards with

partially “free running” readout and FPGA-TDC features for RICH and ECAL sub-detectors. In the

scope of such upgrade it is also planned to change the topology of the event building network. Instead

of the existing “n x m” connection between 30 sub-event hubs and 16 event builder nodes with UDP

connections (Figure 5, left), it might be preferable to configure dedicated sub-event receiver nodes for

each frontend sender (Figure 5, right). So sub-event specific data processing, e.g. TDC online

calibration, can be applied directly at the very receiver node. The actual event building, i.e.

combination of all corresponding sub-events, is then performed in a subsequent “builder network” (B-

net) between such sub-event receivers and the event builder processes. This B-net can use lossless

TCP/IP or InfiniBand connections instead of UDP and may be better tuned with respect to data traffic

shaping for high bandwidth performance. Since DABC was designed from the beginning to optimize

such event builder networks [8], it is well suited to implement such topology for HADES. Tests on an

800 nodes QDR InfiniBand cluster (LOEWE CSC, Frankfurt, Germany) in 2011 have shown that

DABC could achieve with this B-net in “all to all” traffic pattern about 80% of available bandwidth,

i.e.1.25 TB/s.

5. Conclusions and outlook

The DABC framework has been advanced to version 2 with several improvements. The new web

server features, together with the possibility to merge hierarchies of remote agents at a single master

gateway, promise to monitor and control even large distributed data acquisition or analysis nodes at

any web browser. The DABC integration of standard GSI readout hardware has been further

developed. For PEXOR/KINPEX systems this already gives a working alternative to the established

DAQ system MBS. However, a full replacement of MBS by DABC is not intended and not easily

possible, because of the large variety of readout hardware and platforms supported by MBS. On the

contrary, it is provided that any existing MBS node can be controlled as agent from a DABC master

web server with a dedicated browser GUI.

The HADES experiment has replaced its old event building software by DABC and applied it for

production data taking at the pion beam campaign in 2014. DABC could handle all requirements and

facilitated data connections to quality analysis monitoring. To fully utilize DABC possibilities,

HADES will soon test another event building topology with a lossless DABC builder network (Bnet).

Additionally, the HADES monitoring system may also apply the DABC web server and control

hierarchies in the future.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

7

References

[1] Adamczewski-Musch J, Essel H G, Kurz N and Linev S 2010 Dataflow engine in daq backbone

dabc IEEE TNS 57 614-17

[2] Minami S, Hoffmann J, Kurz N and Ott W 2010 Design and implementation of a data transfer

protocol via optical fibre, Proc. RT 2010 17th IEEE-NPSS (Lisbon),

http://dx.doi.org/10.1109/RTC.2010.5750447

[3] Adamczewski-Musch J, Essel H G and Linev S 2011 The dabc framework interface to readout

hardware IEEE TNS 58 1728-32

[4] Essel H G, Hoffmann J, Kurz N and Ott W 2000 The general purpose data acquisition system

mbs, IEEE TNS 47 337-9

[5] Adamczewski-Musch J, Bellenot B and Linev S 2014 Web interface for online root and daq

applications, Proc. RT2014 19
th
IEEE-NPSS (Nara),

http://dx.doi.org/10.1109/RTC.2014.7097456

[6] Michel J et al. 2011, The upgraded hades trigger and data acquisition system JINST 6 C12056

[7] Adamczewski-Musch J, Linev D, Ovcharenko E and Ugur C, 2013 HADES trbnet data formats

for dabc and go4 GSI Scientific Report GSI-SR2012 PHN-SIS18-ACC-41

[8] Adamczewski J, Essel H G, Kurz N and Linev S 2008 Data acquisition backbone core dabc

IEEE TNS 55 No.1, 251-5

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082027 doi:10.1088/1742-6596/664/8/082027

8

