21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072053 doi:10.1088/1742-6596/664/7/072053

SNiPER: an offline software framework for
non-collider physics experiments

J. H. Zou', X. T. Huang?, W. D. Li!', T. Lin!, T. Li?, K. Zhang!,
Z.Y. Deng', G. F. Cao'

! Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
2 Shandong University, Jinan, China

E-mail: zoujh@ihep.ac.cn

Abstract. SNIiPER (Software for Non-collider Physics ExpeRiments) has been developed
based on common requirements from both nuclear reactor neutrino and cosmic ray experiments.
The design and implementation of SNiPER is described in this proceeding. Compared to the
existing offline software frameworks in the high energy physics domain, the design of SNiPER
is more focused on execution efficiency and flexibility. SNiPER has an open structure. User
applications are executed as plug-ins based on it. The framework contains a compact kernel for
software components management, event execution control, job configuration, common services,
etc. Some specific features are attractive to non-collider physics experiments.

1. Introduction

For most modern high energy physics experiments, the offline software plays an important role
in improving physics analysis quality and efficiency. A unified software platform is necessary to
provide a common working environment. So that physicists are able to share ideas and results
conveniently following some conventions, without suffering from technical programming details.
This has advantages for resource optimization and manpower integration, which can improve
the software development, usage and maintenance.

Generally the data processing procedure obeys a few fixed patterns in a specific domain.
These patterns can be implemented as software framework independently. A software framework
is reusable and extensible. It is the skeleton of a software platform. In such a framework,
programming experts have taken account of various requirements for data processing. Many
generic functionalities and attractive features are integrated. Users can selectively replace a
module or add new modules to it. A distinctive framework determines the vitality of the whole
software platform. There have already been several very successful and widely used frameworks,
such as Gaudi [1] and basf2 [2].

However, there are always new challenges to software in recent experiments. A new
framework SNiPER (Software for Non-collider Physics ExpeRiments) is implemented based
on the requirements of nuclear reactor neutrino and cosmic ray experiments, especially JUNO
(Jiangmen Underground Neutrino Observatory) [3] and LHAASO (Large High Altitude Air
Shower Observatory) [4] in China. As a general purpose framework, it is customizable, extensible
and maintainable. We try to keep it concise and lightweight. Uncertain requirements in the far
future are not concerned.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072053 doi:10.1088/1742-6596/664/7/072053

SNiPER is designed and managed modularly. Every functional element is implemented as a
module, and can be dynamically loaded and configured. Modules are designed as high cohesion
units with low couplings between each other. They communicate only through interfaces. We
can replace or modify one module without affecting any of the others.

User’s Application Layer

No need to care get data o s No need to care
where the data axecute ca atio where the data
comes from put re back to will go

- Pray

~ =

Prepare daN featureq such as r/COIIect algorithm
geometry ...

be processed results

SNIPER

Core Software Layer ED 1/0: disk, DB, network, grid...

Python Ul Layer run a batch job or interactively debug a module

Figure 1. An overview of SNiPER

As shown in Fig.1, a SNiPER based system can be divided into 3 layers. In the core software
layer, a compact SNiPER kernel provides many common interfaces, such as data I/O and
memory management. All features in the kernel can be reused directly by any components
in the system. In the application layer, algorithm developers are free from trivial missions,
such as data preparing and result collecting. In the User Interface layer, the dynamic scripting
language Python is used to provide additional flexibility. A SNiPER job can be executed in
batch mode with script files or interactively in command line.

2. Implementation
Mixed programming with multiple languages is attractive and practical. It is possible to choose
different language for different aspects of our software. C++ is chosen for the main body of
SNiPER. It determines the application execution efficiency. Meanwhile Python is used as user
interface, which provides more runtime flexibilities.

Boost.Python [5] is the key of C++ and Python integration in SNiPER. We dealed with
Boost.Python carefully in the core functionalities. Thus most users needn’t to know the detailed
skills of mixed programming.

2.1. Software Components Management
SNiPER is easy to be extended. New features can be implemented as SNiPER modules and
embedded into the framework as plug-ins. The computing model is inspired by other pioneering
software frameworks, especially the concept of algorithm and service from Gaudi. An algorithm
provides a specific procedure for data processing. A complete data processing chain is composed
of a sequence of algorithms. A service provides useful features that can be called by users
anywhere when necessary.

There is a new concept that named task in SNiPER. Task performs like a lightweight
application manager. But there can be more than one task instances in a single running job.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072053 doi:10.1088/1742-6596/664/7/072053

It’s able to specify different algorithms and services in each task independently. We can achieve

some complex goals in a simple way by this mechanism. For example, when there is only single-

stream I/0O service, we can hold a single-stream in each task and simply combine several tasks
to implement a multi-stream I/O application.

Since a task acts like a components container,

each task is embodied by some services, algorithms

O and sub-tasks. It is recommended to organize all

TopTask task instances in a tree structure in a SNiPER

job, as show in Fig.2. Each component (a task,

@ % % an algorithm or a service instance) is assigned a
- _ unique path style string. Component instances
Algorithms Services SubTasks can be created with the same name in different
% ==sunr paths, and each one can be retrieved with its

absolute or relative path. We can avoid the naming
confusing or conflicts by this way compared to a
plan namespace. This approach also provides us
a clear architecture for components management.

It groups related components together in a single
task, and organizes tasks via their affiliation.

Figure 2. Components tree in a SNiPER
job

2.2. Event Ezecution Control

As mentioned above, algorithms and services are plugged and executed dynamically. They can
be selected and combined flexibly for different requirements. Algorithms in a single task are
executed sequentially. Obviously this is not enough. In SNiPER we implement an incident
mechanism to enhance the communication between tasks.

An algorithm sequence in Task Other Tasks
EventLoop |

Executed on Demand_
Algorithm 1 >

| . Executed on Demand

Algorithm 2 A'9°"Ith"' 4 ”

_I Algorithm 5 Algorithm 6

Algorithm 3 |

h I
I

—

Figure 3. Conditional execution of algorithm subsets

As show in Fig.3, a task can be triggered by an incident on demand. So that users can
selectively excute algorithm subsets during event loop. In this way, SNiPER gains more flexibility
to fit non-collider physics experiments.

Take the simulation of an IBD (Inverse Beta Decay) event as example,

17€+p—>e++n

A neutrino event results two signal events (a positron and a neutron) in the detector. In this
situation, we can handle the signal events in a sub-task. It can be triggered twice for each

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072053 doi:10.1088/1742-6596/664/7/072053

neutrino event. In other words, algorithm subsets are able to execute different times during
event loop.

For the coupling between tasks is very weak, tasks can be combined almost with no limitation.
We are able to construct more complicated applications with simple tasks.

2.8. Data Memory Management

Compared to collider experiments, neutrino experiments have two specific characteristics: 1)
time correlation between events; 2) a very small fraction of signal events among a large number
of backgrounds. The software framework should therefore provide a mechanism of flexible data
I/0 and event buffering to enable high efficiency data access and storage, as well as the capability
to retrieve the events within a user-defined time window.

Currentevent Other events [] Eventbuffer
ExeNum EvtNum: 0 1 2 3 4 5 6 7
o | |
t |
2 | |
3 | | Figure 4. FIFO Event
4 | | buffer with a time win-
dow

In order to facilitate event correlation analysis, a FIFO (First Input First Output) data buffer
is used to store adjacent events and a sophisticated method of memory updating is designed, as
show in Fig.4. In each execution moment, an event acts as the anchor of time window in the
event flow. Adjacent events in the time window are cached in the buffer simultaneously. During
the event loops, the anchor event moves forward one by one, and events in the time window are
synchronized at the same time. So that access to successive events within a user-defined time
window according to event timestamps becomes possible.

This FIFO event buffer is optional in SNiPER. Users are able to create a new memory
management service by implementing the related interface of SNiPER. Both event data model
and in-memory data management can be customized by different applications.

2.4. Common Services
The framework involves many frequently used functionalities. They are implemented as service
modules, which can be selectively loaded.

Data to be processed may come from different places and be in different types and formats.
The results may also be stored in different ways. In the framework we reserve interfaces for
different I/O support, so that the I/O service can communicate conveniently with other modules
via the interface. A simple logging mechanism is implemented to support formatted logs, with
the level of priorities which can be configured at runtime. A system resource loading tool
is developed for the performance monitoring. It’s helpful for us to investigate performance
bottlenecks, and potential bugs such as memory leak. Accessing to popular external libraries is
also considered. For example, ROOT [6] histograms booking is wrapped in a service, so that it
is configurable via SNiPER Python interface.

More common features, such as particle property lookup and database accessing, will be
available in the future.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072053 doi:10.1088/1742-6596/664/7/072053

3. Conclusions

Currently a nascent product of SNiPER has been released and is being used by the JUNO
and LHAASO experiments. The practices show that the software architecture is universal and
expandable. As a general purpose framework, SNiPER can be used by other non-collider physics
experiments to build their offline data analysis and processing systems. Now we are considering
the parallel computing in SNiPER. This fantastic feature will be involved in the near future.

Acknowledgments

This work is supported by the Strategic Priority Research Program of the Chinese Academy of
Sciences, Grant No. XDA10010900, and in part by the CAS Center for Excellence in Particle
Physics (CCEPP).

References
[1] Barrand G et al 2001 GAUDI - A software architecture and framework for building HEP data processing
applications Comput. Phys. Commun. 140 45

[2] Moll A 2011 The Software Framework of the Belle II Experiment J. Phys.: Conf. Ser. 331 032024

[3] The JUNO Project URL: http://english.ihep.cas.cn/rs/fs/juno0815/

[4] Cao Zhen et al 2010 A future project at tibet: the large high altitude air shower observatory (LHAASO)
Chinese Phys. C' 34 249

[5] The Boost C++ Libraries URL: http://www.boost.org/

[6] Brun R and Rademakers F 1996 ROOT - An Object Oriented Data Analysis Framework Proceedings

AIHENP96 Workshop, Lausanne, Sep. 1996. 1997 Nucl. Inst. and Meth. in Phys. Res. A 389 81-6. See also
http://root.cern.ch/.

