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Abstract. The reconstruction of vertices corresponding to proton—proton collisions in ATLAS
is an essential element of event reconstruction used in many performance studies and physics
analyses. During Run-1 of the LHC, ATLAS has employed an iterative approach to vertex
finding. In order to improve the flexibility of the algorithm and ensure continued performance for
very high numbers of simultaneous collisions in Run-2 of the LHC and beyond, a new approach
to seeding vertex finding has been developed inspired by image reconstruction techniques. This
note provides a brief outline of how reconstructed tracks are used to create an image of likely
vertex collisions in an event, describes the implementation in the ATLAS software, and presents
some preliminary results of the performance of the algorithm in simulation approximating early
Run-2 conditions.

1. Introduction

The reconstruction of primary vertices from individual proton—proton collisions is essential for
physics analysis with the ATLAS detector. An accurate reconstruction of the number and
positions of interaction vertices is needed by algorithms that separate the effects of additional
collisions (“pile-up”) from the measurement of the properties of the particles generated by the
hard-scattering collision of interest. During Run-1 of the LHC, ATLAS employed an iterative
approach to vertex finding and fitting. This algorithm performed well for up to 40 inelastic
collisions in one LHC bunch crossing. To quantify the amount of pile-up, the variable “u”
is used, equalling the average number of interactions per bunch crossing. During Run-2 and
beyond, the amount of pile-up is expected to become even higher. A new approach inspired by
imaging algorithms, as suggested elsewhere [1], is in development for future running. The goal is
to perform better than the iterative algorithm at very high p [2]. This new algorithm attempts
to simultaneously identify all likely vertex locations in one LHC bunch crossing by using all
tracks as input to a three-dimensional imaging algorithm (similar to those used in many medical
imaging applications [3]). These locations are then used as seeds to the vertex finding and
fitting process. This note presents a brief description of this algorithm both in terms of the
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procedure and the software implementation. Some preliminary examples of its performance are
also presented.

The results shown are obtained from simulations of the ATLAS detector [4], which is a
large multi-purpose particle detector at the LHC. Monte Carlo generated collision events are
processed through a GEANT4 [5] simulation of the ATLAS detector [6]. Minimum bias events
for pile-up interactions are generated using the PYTHIAS8 [7] Monte Carlo generator with the
A2 tune [8]. To examine the vertex algorithm performance for collisions with a large number of
tracks, top—antitop pair production events generated with POWHEG [9, 10, 11, 12] interfaced
to PYTHIAG [13] have been used. All interactions are simulated at an energy of 13 TeV under
conditions expected in early LHC Run-2 during 2015. The inputs to the vertex reconstruction
algorithms are reconstructed tracks in the Inner Detector, with a pseudorapidity coverage of
In| < 2.5.1

In general, the process of vertex finding and fitting in ATLAS is divided into three major
steps — seeding, track assignment, and fitting. The procedure and performance of the iterative
algorithm used in Run-1 are described in detail in Ref. [14]; a rough outline of the procedure is
as follows:

(i) The impact parameters zq of all tracks with respect to the centre of the beam spot are used
to produce a single seed at the location of the estimated mode in z [15], using an iterative
method to find the most likely value.

(ii) Tracks compatible with the seed are grouped together for fitting.

(iii) The adaptive vertex fitting algorithm [16] is used to estimate the position and uncertainty
of the vertex.

(iv) Incompatible tracks that are not used in a previous vertex are used to repeat the procedure
starting from the creation of a new seed.

The iterative algorithm is primarily tuned to avoid splitting tracks from a single interaction
vertex into multiple reconstructed vertices. However, as the amount of pile-up increases, merging
two interactions by combining the reconstructed tracks from both becomes more common. Since
seeds are produced one at a time, and the tracks from the two interactions may all be close
enough to be compatible with a common vertex, the first seed created can result in a vertex
merging the tracks from the two interactions together. All these tracks are then removed from
consideration, so it is not possible to find a second seed in order to reconstruct a second vertex
for these two interactions. As pile-up increases, this results in a negative quadratic dependence
of the number of reconstructed vertices on p. The primary motivation for the development of the
imaging algorithm has been to implement a seeding strategy that will identify all probable vertex
locations in a single pass. By producing two seeds for cases in which two close-by collisions took
place before proceeding to track assignment and fitting, merging can be avoided by assigning
tracks to both seeds, although the rate of split vertices may be higher.

2. Imaging algorithm description
In the imaging algorithm all seeds are output in a single step. The procedure is as follows:

(i) A three-dimensional binned histogram to be filled by the image is created containing the
configurable volume in which vertex finding will be done. In these proceedings, the x and
y dimensions of the box are 4 mm long and the the z dimension is 400 mm.

1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point
(IP) in the centre of the detector and the z-axis along the beam direction. The z-axis points from the IP to the
centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ¢) are used in the transverse
(z,v) plane, ¢ being the azimuthal angle around the beam direction. The pseudorapidity is defined in terms of
the polar angle 6 as n = — Intan(6/2)
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(ii) Helical track trajectories are linearised and back-projected into the histogram using a
voxel ray-tracing algorithm [17]; the histogram content in each bin crossed by a track
is incremented by the path length of the linearised track in that bin. An example back-
projection is shown in Fig. 1a.

(iii) The back-projection is Fourier transformed into frequency space using the FFTW3 [18]
library.

(iv) A filter composed of two major parts is multiplied with the frequency space histogram.
The image is reconstructed by applying a filter derived from the point spread function [3],
adapted for the angular acceptance of the ATLAS tracking detector. It is essentially the
inverse of the Fourier transform of the detector angular acceptance. In addition, a four-term
Blackman-Harris window filter [19], which smoothly scales down higher frequencies up to
a configurable cutoff frequency in each of the x, y, and z directions, is used to lessen the
effect of high frequency variations. These variations can result, for example, in additional
image peaks along outgoing track paths.

(v) The filtered frequency space image is then back transformed to position space, giving a final
image as shown in Fig. 1b.

(vi) The resulting image is then passed to a separate clustering algorithm where all seeds are
identified from peaks in the image.

Two example configurations of the imaging seeding algorithm are used to compare performance
with the iterative algorithm. The only difference between the two is in the choice of the number
of bins to be used for the image histogram in the z-direction; for simplicity the other configurable
elements were not re-tuned to give similar performance on a particular metric. In one, 1024 bins
are used to cover a 400 mm range, while the other uses 2048 bins for the same range. Each
uses 16 bins in the z and y directions, which was found to be an acceptable trade-off in terms of
processing speed and performance. These configurations are chosen to provide example points
where different minimum 2z separations between image peaks are possible. Figure 1 uses a
different binning for purposes of illustration. But many more configurations can be made with
different numbers of bins, ranges, and window filters. The interplay with the algorithm used to
identify seeds is key here.

Development of a final clustering algorithm to produce vertex seeds is still ongoing; the results
given in this note come from a simple, fast one-dimensional projection algorithm. Because of the
modular nature of the seeding procedure, it is straightforward to substitute a more sophisticated
image processing algorithm in the future to improve performance. The projection algorithm
was chosen for first results because the magnitude of the track position uncertainties is large
compared to the beam spot size and it is difficult to separate vertices in the x and y directions
in the image. To avoid fluctuations at large values of & and y away from the expected beam-
spot location, only bins within a 1o box in zy are used in the projection. First, the standard
deviation in x and y is calculated using the full image — its width is driven by the smearing of
the method rather than the width of the true vertex distribution. Then this region is used to
project the three-dimensional vertex image onto the z-axis; a view of the same event as in Fig. 1
(with an expanded z-range) is pictured in Fig. 2. To identify seeds in the projection, all local
maxima above a configurable threshold are found. The lower of two peaks is eliminated if the
minimum value between it and the other peak is greater than 90% of its value. The resulting
set of vertex seeds is then used to perform the vertex finding and fitting.

In the track assignment step, each track is assigned to the closest seed to its trajectory. This
is possible because the imaging algorithm produces all seeds simultaneously. This is the main
difference with respect to the vertex finding for the iterative algorithm, which produces them
one-by-one. Each resulting group of tracks is then fit with the same adaptive fitting algorithm
for both imaging and iterative seeding. So if, for example, two close-by interactions produce two
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(b) Reconstructed image

Figure 1: Illustration of the image reconstruction of part of a single simulated ¢t event using
POWHEG and PYTHIAG, including pile-up, centred on the bin with the largest content in
the reconstructed 3D histogram image. Slices are made through this peak in the zy and zy
planes (at x = 15 and z = 0), and the axes are labeled both with the actual bin numbers used
in the algorithm and the corresponding spatial extents. The results of the track back-projection
step are shown in Fig. la; the bin content represents the sum of track path lengths in each
bin. In Fig. 1b the full reconstructed image after Fourier transformation into frequency space,
filtering, and back transformation is shown; this histogram is used as input to image processing
algorithms to identify likely vertex locations that appear as peaks in the image. In addition to
the interaction resulting in the highest peak (centred at z = 0), several other interactions are
visible in the reconstructed image. From Ref. [2].
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seeds, both are likely to have some tracks assigned to them and two final reconstructed vertices
can be found.

Zz [mm]

-30 -20 -10 0 10 20 30 40 50 60
g :I I T T T I T T T I T T T I T T T I T T T I T T T I T T T I T T T I T T T I ]
[ - 1 .. ) . .
S C ATLAS Preliminary Simulation _— ]
> 0.4 {s =13 TeV Threshold 3
@ - ]
2 - * Seeds ’
Z 0.3 :— v . —:
0.2 i —
0.1 / ;. . =
-4 ! ]
0 _“I-J-I ‘.-r 1 1 1 1 I ;k-’-lf W 1 1 1 I‘hr-T_l—

900 1000 1200 1300

z [bins]

Figure 2: Image of a portion of a simulated event (the same ¢t event imaged in Fig. 1), after
performing the full image reconstruction including transforms and filtering and then projecting
onto the z-direction. The z-bin numbers have been changed from relative to absolute numbering;
the peak at z = 0 in Fig. 1 corresponds to the one at z ~ 920. The seeds identified in the
projection are indicated. From Ref. [2].

3. Algorithm structure and implementation

The software implementation of the imaging vertex finding algorithm is designed to be highly
modular and configurable, relying on the features of the ATLAS Athena framework [20]. Each
of the major steps in the vertexing algorithm (image creation, seed finding, track assignment,
and vertex fitting) is performed by a separate tool implementing a defined interface specific to
that step. Different versions of these tools can be developed, and the user can switch between
them at run-time by configuring the tools used by the over-arching vertexing algorithm. For
example, different strategies for identifying seeds in the reconstructed image can be developed
in parallel and swapped in the configuration. The tools also define configurable properties, for
example the number of bins in the image or cutoff frequencies in the filtering, allowing different
settings to be configured at run time. In this section, an outline of these tools is provided.

The imaging seeding starts with the imaging itself — track back-projection, Fourier transforms,
and filtering. A tool takes as input a collection of tracks from which to make the image,
implements the algorithm as described above, and populates an array representing the 3D image
histogram. Because of its large size, only one array is kept and the space is not re-allocated event
by event. Accessors and helper functions are given to the user to facilitate image processing.
In principle, this tool could be used in other algorithms besides the seeding one described here,
such as beam-spot finding. At run-time the size of the volume to be used, the number of bins
used, and the cutoff frequencies in the filter can all be configured.

For vertex seeding, the image is used as input to a cluster finding tool that will produce the
actual vertex seeds which are output as a list of positions. The simple projection algorithm
described above is one example of such a tool. In the future, new, more sophisticated algorithms
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Table 1: Comparison of algorithm performance for simulated events with a single interaction.
The efficiency to reconstruct any number of vertices for a single interaction, and the rate at
which single interactions are split to form multiple vertices are shown for the iterative algorithm
and for two example configurations of the imaging algorithm with 1024 or 2048 z-bins in the
image. From Ref. [2]. .

Minimum bias tt
Efficiency [%] Split rate [%] Efficiency [%] Split rate [%]
Tterative 81.8 0.04 100.0 0.38
Imaging 1024 z-bins 81.5 0.2 100.0 0.96
Imaging 2048 z-bins 80.3 4.3 100.0 9.5

could be used to improve the performance of the seeding algorithm. This is straightforward
to do because of the modular nature of the algorithm. New code can be created with the
same interface as the current tool, and swapped in during run-time configuration. The track
assignment is then performed using the full list of seeds by another tool. Currently this is done
simply by assigning each track to be used to the closest seed among the full list. The vertex fit
combining the tracks assigned to each seed is also performed by a separate configurable tool.

4. Performance studies

A comparison of the performance of the imaging algorithm with the iterative one for single
interactions (no additional pile-up in the event) is found in Table 1. The performance has been
tested with PYTHIAS8 minimum bias and POWHEG+PYTHIAG tt. For single interactions,
the most important metrics are the overall efficiency (was a vertex reconstructed at all for an
event), and the split rate (in what fraction of events are two or more vertices reconstructed).
Minimum bias events, with fewer tracks than tt, are less efficient but less prone to splitting. Two
example configurations of the imaging algorithm have been used with 1024 and 2048 z-bins. The
imaging algorithm with 1024 z-bins produced similar performance to the iterative algorithm;
with 2048 bins more split vertices are produced. The algorithm has not been adjusted to produce
the same efficiency or split rate for the two image sizes. In the future, an additional algorithm
may be used to recombine these extra split vertices with the full vertex fit information.

The advantage of the larger number of z bins is that vertices can be reconstructed at smaller z
separations than in the iterative algorithm, as demonstrated in Fig. 3 showing the Az separation
between all pairs of vertices in minimum bias events with pile-up. The dip at low separation
occurs when separate interactions merge into one reconstructed vertex; the small peak near
Az = 0 for the iterative algorithm includes contributions from splitting. The enhancement
above 1 for imaging results from splits as well, but because of the binning used they are not
produced at extremely small separations. The imaging algorithm with 2048 z-bins allows more
closely spaced vertex pairs to be reconstructed since two seeds can be identified prior to track
assignment.

The decrease in the number of merged vertices reduces the quadratic losses, as a function of
1, as shown in Fig. 4. The total number of reconstructed vertices in a minimum bias sample as
a function of p is described by a linear slope, €, and additional quadratic losses due to merging,
m:

Ny’ =co+ep (1 —mpu) (1)

While the 1024 bin configuration had very similar single interaction performance to the iterative
algorithm, it produces slightly more merging losses at higher pu. The 2048 bin configuration
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shows fewer losses, as expected from the behaviour seen in the Az distribution; with m = 0.005
versus m = 0.008, at pu = 40 on average the iterative algorithm loses 32% of vertices per event
compared to a linear extrapolation of the efficiency, while the imaging algorithm loses 20%.

The other facet to performance involves the time taken to process each event. In Fig. 5, the
total time per event to perform the seeding step is compared between the iterative algorithm and
the imaging algorithm with 2048 z-bins. This was measured on a machine with a HEPSPEC
scaling factor of about 13. It does not include the time spent assigning tracks to each seed or
performing the final vertex fit; the total time spent reconstructing vertices, excluding seeding,
ranges from < 1 ms at u = 0 to &= 50 ms at p = 40. Overall, the imaging seeding is slower up
to very high values of . The imaging seeding time is dominated by the time spent performing
Fourier transforms and applying the filter to reconstruct the image, which depend only on the
number of bins used in the image histogram. It shows only a weak dependence on the value of
p from the back-projection and seeding steps, while for the iterative approach the seeding time
increases quadratically.
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5. Conclusion

An imaging algorithm has been developed for ATLAS in order to produce seed positions for
vertex finding and fitting. It uses all tracks in the event to provide simultaneously a full set of
seeds, instead of the previous approach of iteratively producing single new seeds and fitting them.
This approach is highly modular and configurable in both the imaging itself and the identification
of vertex seeds from the image. Preliminary performance studies in simulations corresponding
to the conditions expected early in LHC Run-2 show that it is possible to identify more closely
spaced interactions and thus to lessen the effects of merging in vertex reconstruction. While the
algorithm has a larger overhead in the processing time per event at low amounts of pile-up, the
scaling as a function of the number of pile-up collisions is better than the iterative approach.
With future development and optimization still to come, this algorithm shows promise for vertex
seeding as the number of simultaneous collisions increases in future LHC running.
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