
Geant4 VMC 3.0

I Hřivnáčová

Institut de Physique Nucléaire (IPNO), Université Paris-Sud, CNRS-IN2P3, 91406 Orsay
Cedex, France

E-mail: ivana@ipno.in2p3.fr

A Gheata

European Organization for Nuclear Research (CERN), CH-1211 Genève 23, Switzerland

E-mail: andrei.gheata@cern.ch

Abstract. Virtual Monte Carlo (VMC) [1] provides an abstract interface into Monte Carlo
transport codes. A user VMC based application, independent from the specific Monte Carlo
codes, can be then run with any of the supported simulation programs. Developed by the
ALICE Offline Project and further included in ROOT [2], the interface and implementations
have reached stability during the last decade and have become a foundation for other detector
simulation frameworks, the FAIR facility experiments framework being among the first and
largest.

Geant4 VMC [3], which provides the implementation of the VMC interface for Geant4 [4], is
in continuous maintenance and development, driven by the evolution of Geant4 on one side and
requirements from users on the other side. Besides the implementation of the VMC interface,
Geant4 VMC also provides a set of examples that demonstrate the use of VMC to new users
and also serve for testing purposes. Since major release 2.0, it includes the G4Root navigator
package, which implements an interface that allows one to run a Geant4 simulation using a
ROOT geometry.

The release of Geant4 version 10.00 with the integration of multithreading processing has
triggered the development of the next major version of Geant4 VMC (version 3.0), which was
released in November 2014. A beta version, available for user testing since March, has helped its
consolidation and improvement. We will review the new capabilities introduced in this major
version, in particular the integration of multithreading into the VMC design, its impact on the
Geant4 VMC and G4Root packages, and the introduction of a new package, MTRoot, providing
utility functions for ROOT parallel output in independent files with necessary additions for
thread-safety. Migration of user applications to multithreading that preserves the ease of use
of VMC will be also discussed. We will also report on the introduction of a new CMake [5]
based build system, the migration to ROOT major release 6 and the improvement of the testing
suites.

1. Introduction
Geant4 VMC [3] has been previously described in [6], [7] and in the context of ALICE in [8].
In this paper, we will report on the new developments and improvements included in its major
version 3.0. First we will briefly present the history of Geant4 VMC development and previous
major versions. The next sections will be then devoted to new capabilities introduced in this

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



major version: the integration of multithreading into the VMC design, the introduction of a new
CMake based build system, the migration to ROOT major release 6 and the other improvements.

2. Geant4 VMC History
VMC defines an abstract layer between a detector simulation user code and the Monte Carlo
transport code (MC). In this way the user code is independent from any specific MC and can be
used with different transport codes, such as GEANT 3.21 [9], Geant4 [4] or FLUKA [10], within
the same simulation application. It was developed by the ALICE Offline Project and, after the
complete removal of all dependencies from the experiment specific framework, it was included
in ROOT.

The first version of the VMC interface was included in ROOT 3.03/05 in October 2002. The
Geant4 VMC version series started with version 0.1 and continued up to version 0.5. The base
Geant4 and ROOT versions for this release, as well as for the next Geant4 VMC major releases,
are presented in Table 1.

Version v0.1 v1.0 v2.0 v3.0

Date Oct 2002 Jul 2003 Dec 2006 Nov 2014

New First Geometry G4Root Multithreading
features version convertors navigation CMake, ROOT 6

ROOT 3.03/09 3.05/06 5.14/00 5.34/23 and 6.02/01

Geant4 4.1 5.2 8.2 10.00.p03

Last v0.5 v1.9 v2.15 v3.1

Table 1. Overview of Geant4 VMC versions.

The major version 1.0 included geometry convertors which allowed to use geometry defined
with new ROOT geometrical modeller, TGeo [11], in a VMC application. This 1.0 version
was released in July 2003. The geometry convertors were gradually replaced with usage of an
external tool, VGM [12] and removed from Geant4 VMC in version 1.8. The 1.x series continued
up to version 1.9 for three years.

The next major version, 2.0, released in December 2006, included the G4Root package which
implements Geant4 navigation that uses directly the TGeo geometry. G4Root was moved in
Geant4 VMC from ROOT in order to group together Geant4 related packages based on ROOT
and to facilitate their building for the user. In this version, the geometry definition in all
examples was reimplemented with usage of TGeo geometry modeller. The previous code, based
on GEANT3-style functions defined in TVirtualMC interface, was kept as an option in testing
for assuring a backward compatibility. This 2.0 version started the series which continued up to
version 2.15 for 8 years.

The procedure of versioning was standardized during this period. A new Geant4 VMC version
release follows every new Geant4 version, which happens once in a year. Then, a new release
can also be triggered by new developments or by a change in the VMC interface in ROOT.
A given Geant4 VMC version is tested with given versions of Geant4 and ROOT, which are
noted in the Geant4 VMC release documentation. In general, it can be then used with the given
version of ROOT or higher and with the given version of Geant4 including its further patches.
The users are recommended to update their Geant4 installation with each Geant4 patch release,

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

2



even though the Geant4 patches released after the Geant4 VMC tag do not appear in the Geant4
VMC release documentation.

The last major version, 3.0, triggered by the release of Geant4 version 10.00 with the
integration of multithreading processing, was released in November 2014 and it was followed
by a consolidated version 3.1, based on the next Geant4 version, 10.01, in December 2014. The
new capabilities introduced in this major version will be discussed in next sections.

3. Multithreading
The development of Geant4 VMC multithreading (MT) prototype started in the last quarter
of 2011. We adopted the same approach as in Geant4 and the main task of the migration
to multithreading processing was the replacement of all singleton objects in Geant4 VMC
with singletons per thread. Modifications of the same type as described in the Geant4
documentation [13] were applied to Geant4 VMC classes.

Changes were required also on the level of the VMC interfaces as both TVirtualMC and
TVirtualMCApplication are defined as singletons. A new function, IsMT(), was added in
TVirtualMC in order to be able to query multithreading mode in user applications. A set of
new functions was added to the TVirtualMCApplication interface class as presented in Table 2.

// required for running in MT
virtual TVirtualMCApplication* CloneForWorker() const;

// optional
virtual void InitForWorker() const;

virtual void BeginWorkerRun() const;

virtual void FinishWorkerRun() const;

virtual void Merge(TVirtualMCApplication* localMCApplication);

Table 2. New functions added in TVirtualMCApplication for multithreading.

The users are required to override TVirtualMCApplication::CloneForWorker(), while the
implementation of the other functions is optional. These functions are then used to clone the
application and its containing objects on thread workers. Creating these objects on worker
threads is then triggered from the Geant4 VMC classes. Detailed instructions for migration of
VMC applications to multithreading are provided on the VMC Web site together with other
implementation details and useful tips.

A new set of classes taking care of locking critical ROOT operations in multithreading
mode - as for example registering ROOT objects to ROOT trees - is introduced in a new
MTRoot package. This package enhanced the ROOT input/output functionality previously
provided by the Ex02RootManager class within the examples. MTRoot is independent from
the Geant4 VMC interface, but it is used in VMC examples. It provides TMCRootManager
and TMCRootManagerMT, the ROOT manager classes for VMC sequential and multithreaded
applications respectively. Both these classes are derived from a common interface and are
introduced in terms of a single implementation class in order to avoid code duplication, see
Figure 1. In addition, a utility class TMCAutoLock, providing a locking mechanism, is also
included in this package. It was extracted from the G4AutoLock class implementation in Geant4
for Linux and MAC OSX platforms.

The G4Root package is the interface allowing running a Geant4 simulation with a ROOT
geometry. In spite of being provided within Geant4 VMC, it can be built and used independently

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

3



Figure 1. The design of MTRoot classes for the ROOT output.

from VMC. It implements a specialization of the G4Navigator class which uses directly the TGeo
geometry. Its migration to multithreading mode has been also accomplished in version 3.0. The
design had to be adapted to creating an instance of the navigator for each worker thread. The old
G4Root test based on Geant4 novice example N06 has been replaced with a new test based on
Geant4 extended example OpNovice. This example was introduced in Geant4 as a new version
of the N06 example after a transition to a new set of examples for novice users, called basic, in
the Geant4 9.5 release. An important fix in G4Root navigation in geometries using assembly
volumes has been introduced in the first patch release, v3.0.p01. It addressed a problem of stuck
particles getting killed, reported by ALICE .

4. Build System
The VMC packages used the build system based on configuration Make files distributed in
ROOT specific directory, root/etc/vmc, including also platform specific configurations. Being
disconnected from the ROOT build system, it required extra maintenance. Moving to CMake
was a natural step after its introduction in Geant4 three years ago, facilitating both introducing
the support for multithreading mode and the future maintenance of the system.

Figure 2. The Geant4 VMC packages.

Geant4 VMC, besides its own set of classes provided in directory source and built in geant4vmc

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

4



library, includes also G4Root, MTRoot and VMC examples packages, each with different
dependencies, see Figure 2. All these packages are based on the ROOT framework. The G4Root
and Geant4 VMC sources depend on Geant4, and Geant4 VMC source can optionally depend
on VGM.

In order to make possible running VMC applications without dynamic loading of libraries,
which causes a known performance penalty, becoming even more important with multithreading,
the VMC examples can now be also linked statically with all libraries into standalone programs.
For keeping maximum simplicity of the code, a fixed configuration is defined in the examples
main() function and its more flexible version is provided in the tests. These examples application
programs bring a direct dependence on both Monte Carlo libraries and VMC packages.

These dependencies are addressed by the new CMake based build system. This makes possible
building all packages at once or building any of them individually. It also handles the use of
optional packages. The available build options are summarised in Table 3. The configuration files
for all included packages, PackageConfig.cmake, are generated and installed in the installation
area. The packages can be then used directly in the client projects without a need to define
their FindPackage.cmake files. “Find” configuration files for ROOT and Geant4 and some more
utility files are also provided.

Geant4VMC BUILD G4Root Build G4Root ON
Geant4VMC BUILD MTRoot Build MTRoot ON
Geant4VMC BUILD Geant4VMC Build Geant4VMC ON
Geant4VMC BUILD EXAMPLES Build VMC examples ON

Geant4VMC USE G4Root Build with G4Root ON
Geant4VMC USE VGM Build with VGM OFF
Geant4VMC USE GEANT4 UI Build with Geant4 UI drivers ON
Geant4VMC USE GEANT4 VIS Build with Geant4 Vis drivers ON
Geant4VMC USE GEANT4 G3TOG4 Build with Geant4 G3toG4 library OFF

Geant4VMC INSTALL EXAMPLES Install examples ON

Table 3. Overview of Geant4 VMC build options.

For a maximum simplicity the generic “Find” and “Use” configuration files are provided
for building both examples libraries and programs. While the VMC application libraries are
independent from specific Monte Carlo libraries, the VMC application program has to be linked
also with selected Monte Carlo libraries including their VMC interface. That is why two sets
of “Find” and “Use” files were defined: FindVMC, UseVMC and FindMC, UseMC. The former
are used for building the VMC application library and the latter for the program. “Find” files
are used to find all needed packages and “Use” files to set compiler definitions, includes and
libraries according to selected configuration options. Besides being provided in Geant4 VMC,
they are also available in Geant3 +VMC.

5. Other Improvements
5.1. ROOT 6
This Geant4 VMC version has been also migrated to ROOT 6. This required to adapt the
examples macros to use the new ROOT interpreter, Cling. The simplest solution for a backward

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

5



interpreter incompatibility was a separation of macros for loading libraries from the single macros
used to run VMC example. Minor fixes were also needed in the code to make it compiling
against C++11 standard, mandatory with this ROOT version. The CMake configuration files
were updated for changes in the generation of dictionaries with Cling. A generation of rootmap
files, which enable library autoloading, was also added in this context.

The migration to ROOT 6 has not discontinued the build against ROOT 5 series and actually
build against both these ROOT major versions is supported and tested.

5.2. Testing
VMC testing is based on shell scripts which run automatically 21 test configurations plus a
special test for all Geant4 available physics lists, the list of which is updated after each Geant4
release. The test configurations are continuously enhanced while adding new features in Geant4
VMC. In addition to the existing test suite run from the standard ROOT session, in version 3.0
we added a second test suite which runs the same tests configurations from examples programs.
The test suites perform tests with both GEANT3 and Geant4 simulation programs.

The test scripts were also improved to facilitate their possible inclusion in automated testing.
Command line arguments were added to make possible to select testing with one simulation
program only, either GEANT3 or Geant4, or to change the test build directory. Summary
messages and return codes were also added to allow to evaluate the result of the tests in a client
code.

5.3. User Support
The enhancements and features available in the new version are documented on the Geant4
VMC Web site integrated in ROOT Drupal. The web pages on “Installing Geant4 VMC” and
“Installing and Running Examples” are completely replaced with new instructions and a new
page dedicated to “Multithreading” was added.

With each new version, the source code documentation is automatically generated with the
Doxygen [14] tool and the release notes are presented with a detailed description of the new
developments and bug fixes, added in the dedicated “history” file on the Web site.

In October 2014, the VMC related bug reports were separated from the ROOT JIRA project
in a new, JIRA VMC project.

6. Conclusions
Geant4 VMC version 3.0 providing multithreading support is available since November 2014.
The interest in Geant4 multithreading was expressed by both ALICE and FAIR experiments:
migration of the FairRoot framework to multithreading is in progress and there are ongoing
ALICE tests with a multithreading prototype. This prototype is based on a VMC example with
realistic ALICE geometry, magnetic field, primary event generator and simplified TPC detector
response. Besides multithreading, this version includes also new build system based on CMake
together with further improvements.

Acknowledgments
The authors would like to acknowledge Oliver Freyermuth from Physics Institute of the
University of Bonn for testing development versions and his contribution to CMake build,
examples test suites and ROOT 6 migration.

References
[1] http://root.cern.ch/drupal/content/vmc

Hřivnáčová I et al 2003 Proc. of Computing in High Energy and Nuclear Physics (La Jolla) pp THJT006
[2] http://root.cern.ch

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

6



[3] http://root.cern.ch/drupal/content/geant4-vmc
[4] Agostinelli S et al 2003 Nucl. Instrum, and Methods A506 250-303

Allison J et al 2006 IEEE Transactions on Nuclear Science 53 No. 1 270-278
[5] K. Martin and B. Hoffman, Mastering CMake: A Cross-Platform Build System , Kitware Inc., 2003
[6] Hřivnáčová I 2008 J. Phys: Conf. Series 119 032025
[7] Hřivnáčová I 2012 J. Phys: Conf. Series 396 022024
[8] Hřivnáčová I et al 2011 J. Phys: Conf. Series 331 032016
[9] Brun R et al 1985 GEANT3 User Guide (CERN Data Handling Division, DD/EE/84-1)
[10] Fasso A et al 2001 Proc. of the MonteCarlo 2000 Conference (Lisbon, Springer Verlag Berlin) 159-164 and

955-960.
[11] Brun R, Gheata A and Gheata M 2003 Proc. of Computing in High Energy and Nuclear Physics (La Jolla)

pp THMT001
[12] Hřivnáčová I 2008 J. Phys: Conf. Series 119 042016
[13] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForToolkitDeveloper/html/ch02s14.html
[14] http://www.stack.nl/ dimitri/doxygen/index.html

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072020 doi:10.1088/1742-6596/664/7/072020

7


