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Abstract. The commonalities between the ALICE and FAIR experiments and their
computing requirements led to the development of large parts of a common software framework
in an experiment independent way. The FairRoot project has already shown the feasibility of
such an approach for the FAIR experiments and extending it beyond FAIR to experiments at
other facilities[l, 2]. The ALFA framework is a joint development between ALICE Online-
Offline (O?) and FairRoot teams. ALFA is designed as a flexible, elastic system, which
balances reliability and ease of development with performance using multi-processing and multi-
threading. A message- based approach has been adopted; such an approach will support the use
of the software on different hardware platforms, including heterogeneous systems. Each process
in ALFA assumes limited communication and reliance on other processes. Such a design will
add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to
meet computing and throughput demands. ALFA does not dictate any application protocols.
Potentially, any content-based processor or any source can change the application protocol.
The framework supports different serialization standards for data exchange between different
hardware and software languages.

1. Introduction

ALFA is the new ALICE-FAIR concurrency framework for high quality parallel data processing
and reconstruction on heterogeneous computing systems. It provides a data transport layer
and the capability to coordinate multiple data processing components. ALFA is a flexible,
elastic system which balances reliability and ease of development with performance by using
multi-processing in addition to multi-threading. With multi-processing, each process assumes
limited communication and reliance on other processes. Such applications are much easier to
scale horizontally (i.e: start new instances on the same node or a newly added node) to meet
computing and throughput demands than applications that exclusively rely on multiple threads
which can only scale vertically (to scale we need to create more threads to the already existing
threads in the same process). Moreover, such a system can be extended with different hardware
(accelerators) and possibly with different or new languages, without rewriting the whole system.
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2. Data transport layer

The data transport layer is the part of the software which ensures the reliable arrival of messages
and provides error checking mechanisms and data flow controls. The data transport layer in
ALFA provides a number of components that can be connected to each other in order to construct
a processing topology. They all share a common base class called device. Devices are grouped
in three categories:

e Source: Devices without inputs are categorised as sources. A sampler is used to feed the
pipeline (Task topology) with data from files.

e Message-based Processor: Devices that operate on messages without interpreting their
content.

e Content-based Processor: This is the place where the message content is accessed and the
user algorithms process the data.

2.1. FairM@: Base for data transport layer in ALFA

FairMQ [3] is the module of the ALFA framework which allow the user to run reconstruction and
analysis tasks based on processing components interacting via messages. This can be applied on
a continuous stream of data (online), as well as on separate data samples (offline). It provides
a set of components to build processing pipelines, called Topologies, in which the user can
integrate custom code in form of tasks, that are to be executed on the streamed data. The system
provides a number of ready to use components for generating, processing, routing and forwarding
(to different systems) the data stream and also provides the means for the users to create
new components with custom functionality. The system can transport data between processes
and/or nodes via the network, inter-process and/or inter-thread communication. The transport
functionality is accessible via an abstract transport interface (currently two implementations are
tested - ZeroMQ [5] and nanomsg [6]). The interface can be implemented by other means to
provide support for future emerging technologies.

FairM(Q provides functionality for creating and configuring the communication channels
(FairMQSockets) and for transmitting data over them via messages (FairMQMessages). The
transport interface implementations can create messages of any size and guarantee that either
these are delivered in full or not at all, so that the user does not have to take care of
partitioning the data. It is also possible to create multi-part messages, composed of any number
of logically independent parts. This allows the developer to add and remove custom data to an
already existing message, without modifying content of the other parts. Leaving the original
message untouched can avoid expensive de-/serialization process. From the point of view of the
application, the message parts are sent and received separately, but on the transport level they
are transferred as a single entity, which keeps the guarantees of delivering either all or nothing.
The framework provides extensive support for handling the data in a zero-copy fashion. The
zero-copy handling of the data by different components happens without actual copying of the
contents between different memory locations, but rather by accessing the same data via a pointer
or a reference. The control over a FairMQMessage is taken over by the framework after the
sending operation is executed. After the framework has finished the sending (asynchronously),
it will take care of the deallocation. Should the data be sent more than once, a COPY method is
provided by the framework. This method does not actually copy the content, but rather creates
an additional reference, preventing it from deallocation until all ”copies” are no longer needed.

3. Payload protocol

ALFA does not dictate any application protocols. Potentially, any content-based processor
or any source can change the application protocol. Therefore, only a generic message class
is provided that works with any arbitrary and contiguous chunk of memory. A pointer must
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be passed to the memory buffer, the size in bytes and, if required, a function pointer to the
destructor, which will be called once the message object is discarded.

The framework supports different serialisation standards that allow for data exchange
between different hardware and software languages. Moreover, some of these include a built-in
schema evolution which naturally simplifies the development of the software and guarantees the
backward compatibility of the payloads. The following are supported by the framework:

e Boost serialization
This method depends only on ANSI C++ facilities[7]. Moreover, it exploits features of
C++ such as RTTI (Run-Time Type Information), templates or multiple inheritance. It
also provides independent versioning for each class definition. This means that when a class
definition changes, older files can still be imported to the new version of the class. Another
useful feature is the save and restore of deep pointers.

e Protocol buffers
Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism for
serializing structured data [8] . The structure of the data is defined once and used to
generate code to read and write data easily to and from a variety of data streams, using a
variety of languages: Java, C++ or Python.

e ROOT
The ROOT Streamer can decompose ROOT objects into data members and write them to
a buffer [9]. This buffer can be written to a socket for sending over the network or to a file.

e User defined
In case it is decided not to use any of the above methods, binary structures or arrays can
still be written or sent to a buffer. Although this method does not include any overhead
for size of the data, issues can occur and will need to be managed. These include: schema
evolution, different hardware, different languages.

4. The Dynamic Deployment System

The Dynamic Deployment System (DDS) is an independent set of utilities and interfaces,
providing a dynamic distribution of different user processes for any given topology on any
Resource Management System (RMS). The DDS uses a plug-in system in order to deploy
different job submission front-ends. The first and the main plug-in of the system is a Secure
Shell (SSH) that can be used to dynamically transform a set of machines into user worker nodes.
The DDS functions are the following:

e Deploy a task or set of tasks

e Use any RMS (Slurm, Grid Engine, ...etc)

e Execute nodes securely (watchdog)

e Support different topologies and task dependencies
e Support a central log engine

During 2014, the core modules of the DDS were developed and the first stable prototype was
released. This has been tested on the ALICE HLT development cluster using 40 computing
nodes with 32 processes per node. The SSH plugin for DDS has been used to successfully
distribute and manage 1281 ALICE O? user tasks (640 First Level Processor (FLPs) and 640
Event Processing units (EPN)). The FLP processes here are emulating the FLP nodes which
will collect the data wheres the EPN emulates the second step of data processing: assigning
each cluster to a track ([10])

The DDS was able to propagate the allocated ports for each process to the dependent
processes and set the required topology for the test. Throughout the test on this cluster, one
DDS commander server propagated more than 1.5 million properties in less than 5 seconds.
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A test with more nodes and cores is ongoing at the test cluster of the new GSI cluster
(Kronos). A rack with 50 dual-Xeon machines (Intel Xeon E5-2660 with 10 physical cores and
20 threads each) is being used for the test. On this cluster there are more than 10000 ALFA
devices (FLPs, EPNs, and one Sampler). During this second test, DDS has propagated about 77
millions key-value properties. The start-up time of the whole deployment by the DDS was 207
seconds for the propagation of all required properties and devices, the bind/connect and enter
into RUN state. This test was an important milestone for the DDS, demonstrating a scalability
adequate for the O? system. The target is to scale up to 100 k devices and reduce the start-up
time for the full deployment down to 10-50 seconds (depending on the number of properties the
system needs to propagate).

5. Performance measurement

Two different systems were used for the performance measurement of data transport layer in
ALFA. The performance tools delivered by ZeroMQ were also used to investigate any penalties
introduced by FairMQ package. The goal of these measurement is to test the usability of the
framework on different and existing system, so no effort was made to optimise or tune the
network on the existing systems.

5.1. Ethernet-based prototype

This system consists of 8 dual-Xeon machines, 4 connected with 40 Gb Ethernet while the other
4 are connected with 10 Gb Ethernet. The throughput was measured as function of message
size (see Fig.1). For the ALICE RUN3 a message part size of 10 MB is expected, for this size,
a rate of about 37.6 Gbs was achieved using 4 core CPUs for sending data between two of the
machines (point to point). This test demonstrates that the overhead introduced by the FairMQ
and ZeroMQ is marginal with a bandwidth equivalent to 94% of the theoretical one and that
the technology scales well above the performance required by the FLPs on their output network
link. More details are in Referance [11].
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Figure 1. Throughput between 2 machines connected via 40 Gb/s Ethernet.
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5.2. InfiniBand-based prototype

The second system is composed of a 40 Gb IB using 4 dual-Xeon machines (Intel Xeon E5520
with 4 physical cores and 8 threads each) all running the same software but with the IPoIB
protocol. Three processes were used to send data from one machine and 4 processes on each
of the other machines received data. A message size of 10 MB was used. An average rate of
2.5 GBs was reached without any optimisation of the kernel parameters. This test confirms
that the marginal overhead introduced by the FairM(Q and ZeroMQ software with a measured
performance equivalent to the one measured with benchmarking programs (see [10] ). The
test also demonstrates the portability of the FairMQ software to different network technologies
(Ethernet and IB) which provides the independence about the underlying network technology.

6. Conclusion

The ALFA framework meet the high throughput requirements for the upcoming upgrade of
the ALICE experiment and FAIR. The scalability of the system has been demonstrated on a
computing cluster equipped with QDR and FDQ InfiniBand Host Channel Adapters (DDS).
The system maintained maximum throughput when scaled to a large number of computing
nodes and multiple processes per node. Furthermore, a traffic shaping has been implemented
on the application level on the FLP nodes to reduce network contention when several FLP
nodes transfer data to the same EPN node [11]. The ALFA framework offers a concept for
the communication with asynchronous messaging system and a tool set that can be used for
data processing scenarios with high throughput requirements, such as the data transport for
the upgrade of the ALICE detector at CERN and the upcoming FAIR accelerator facility in
Darmstadt, Germany .
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