
The NOνA software testing framework

M Tamsett1, C Group2

1University of Sussex, Falmer, East Sussex, UK
2University of Virginia, Charlottesville VA, USA

E-mail: m.tamsett@sussex.ac.uk

Abstract. The NOνA experiment at Fermilab is a long-baseline neutrino experiment designed
to study νe appearance in a νµ beam. NOνA has already produced more than one million
Monte Carlo and detector generated files amounting to more than 1 PB in size. This data
is divided between a number of parallel streams such as far and near detector beam spills,
cosmic ray backgrounds, a number of data-driven triggers and over 20 different Monte Carlo
configurations. Each of these data streams must be processed through the appropriate steps
of the rapidly evolving, multi-tiered, interdependent NOνA software framework. In total there
are greater than 12 individual software tiers, each of which performs a different function and
can be configured differently depending on the input stream. In order to regularly test and
validate that all of these software stages are working correctly NOνA has designed a powerful,
modular testing framework that enables detailed validation and benchmarking to be performed
in a fast, efficient and accessible way with minimal expert knowledge. The core of this system is
a novel series of python modules which wrap, monitor and handle the underlying C++ software
framework and then report the results to a slick front-end web-based interface. This interface
utilises modern, cross-platform, visualisation libraries to render the test results in a meaningful
way. They are fast and flexible, allowing for the easy addition of new tests and datasets. In
total upwards of 14 individual streams are regularly tested amounting to over 70 individual
software processes, producing over 25 GB of output files. The rigour enforced through this
flexible testing framework enables NOνA to rapidly verify configurations, results and software
and thus ensure that data is available for physics analysis in a timely and robust manner.

1. Introduction
The NOvA experiment is a currently active long-baseline neutrino oscillation experiment using
the recently upgraded NuMI beam at Fermilab, USA to measure νµ → νe, νµ → νe, νµ → νµ
and νµ → νµ oscillations [1]. The experiment uses two functionally identical detectors composed
of alternating horizontal and vertical planes of PVC plastic cells. Each cell has a 4× 6 cm cross
section and is filled with liquid scintillator and a looped wavelength-shifting fiber attached to
an avalanche photodiode for light collection. The detectors are separated by 809 kilometers and
located 14 milliradians off-axis from the beam center in order to produce a narrow-band 2 GeV
beam near the oscillation maximum for νe appearance. The Far Detector located in Ash River
Minnesota is 15.6m× 15.6m× 60m, totaling 14 kilotons and 344,064 individual cells. The Near
Detector is located one km from the target at Fermilab and is 4.2m× 4.2m× 15.8m for a total
of 300 tons and 20,192 cells.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062062 doi:10.1088/1742-6596/664/6/062062

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. NOνA software framework
The NOνA Offline Analysis Software (NOνASoft) is written in C++ and built on the Fermilab
Computing Division’s ART framework [2] that uses CERN’s ROOT [3] analysis software.
NOνASoft makes use of more than 50 external software packages, is developed by more than 50
developers and is used by more than 200 scientists from 38 institutions and 7 countries across 3
continents.

NOνA has already produced more than 1 million Monte Carlo and detector generated files
amounting to more than 1 PB in size. These are divided between a number of parallel data
streams such as far and near detector beam spills, cosmic ray backgrounds, several data-driven
triggers and over 20 different Monte Carlo configurations. Each of these data streams must be
processed through the appropriate steps of the rapidly evolving, multi-tiered, interdependent
NOvA software framework. In total there are greater than 12 individual software tiers, each of
which performs a different function and can be configured differently depending on the input
stream.

3. Testing framework
In order to regularly test and validate that all of these software stages are working correctly
NOvA has designed a powerful, modular testing framework that enables detailed validation
and benchmarking to be performed in a fast, efficient and accessible way with minimal expert
knowledge.

The core of this system is a novel series of python modules which wrap, monitor and handle the
underlying C++ software framework. These are configured using command line options to select
from a number of pre-configured chains which define the input data stream to use. Each chain
is itself composed of a number of tiers which each consist of an individual call to the underlying
NOνASoft framework. Tiers typically consist of a discrete stage of event processing, such as
Monte Carlo generation, translation from the data acquisition to the offline data format, the
reconstruction of physics objects or particle identification. Tier-to-tier differences are configured
based on a small number of options including the configuration file to use, the preceding tiers
upon which this tier is dependent, any commands that need to be executed in advance of the
tier and the output files that this tier will produce. The configuration of chains is simple and
flexible and is trivially extensible to easily cater for new data streams and tiers.

The desired tiers are run sequentially with each NOνASoft executable call being spawned
using the python sub-process module. The child process is then tracked via its process identifier.
The memory, disk and CPU usage are monitored while at the same time the output and error
message streams are captured and injected with timestamps. These timestamps are later used
to correlate the tracked metrics with key stages in the NOνASoft framework process, such as
database calls, object initiation and the looping over events.

Once a tier has concluded, successfully or otherwise, its return code is logged and any output
files it produced are analysed in terms of their size and contents. This enables NOνA to check
that the desired objects are being created and also to monitor the disk space requirements of
these. Furthermore checking of the sanity of output files allows downstream tiers to respond
accordingly and not be falsely blamed for upstream failures. Once every tier in a chain has
concluded all of the resultant metrics, output files and logs are archived ready for later analysis.

The testing framework is executed following nightly builds of the NOνASoft development
branch and also following the building of any release version. The suite of tests executed is
chosen to exercise all of the core data streams and software tiers and is run on the same batch
system as production and user analysis jobs. In total upwards of 14 individual streams are
regularly tested amounting to over 70 individual software processes. These produce over 25 GB
of output files each day.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062062 doi:10.1088/1742-6596/664/6/062062

2



4. Visualisation of results
Tests executed nightly and on stable software release versions are reported via a web-based
interface. This interface utilises modern, cross-platform, visualisation libraries to render the
test results in a meaningful way.

Release

Co
un
t

Ended Ongoing STDERR not empty Killed by batch robots
Error No output

S14
-10
-15

S14
-11
-11

S14
-12
-12

S14
-12
-29

S15
-01
-09

S15
-01
-16

S15
-01
-21

S15
-02
-05

S15
-02
-24

S15
-03
-11

S15
-03
-31

S15
-04
-29

S15
-05
-01

S15
-05
-07

0

5

10

15

Figure 1. An example of a test summary graphic showing the collected results of many tests
on static snapshots of the software framework over five months. This graph is made using the
Highcharts JavaScript library [4].

Cron jobs periodically check on the outputs of all tests and use custom python modules to
render the test results into HTML and JavaScript web pages formated using the Bootstrap [5]
development tools. These pages are self documenting, providing the user with a detailed break
down of the configuration of all tests run.

The front page of the web-interface presents two overview graphics, the first showing a high-
level summary of all tests performed on all NOνASoft release versions and the second similarly
showing the results of the previous two weeks worth of nightly tests. An example is show in
figure 1. Provided alongside this are links to the detailed results page of each suite of tests. Each
results page begins with a mid-level summary of the results of all chains, along with links to
the details of the batch jobs used to run these tests and their associated log files. Further down
the page are low-level breakdowns of the test results of each of the tiers that form each chain.
These provide the configuration used to run each tier, along with the full standard output and
error streams produced during their running and the returned error code for failed tests. Also
presented are the peak memory usage of each tier, the integrated and per event CPU times, the
efficiency of the tier in terms of the ratio of input to output events and the number and length
of database calls executed by this tier. Figure 2 shows an example of the summary table of a
chain.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062062 doi:10.1088/1742-6596/664/6/062062

3



Figure 2. A summary table showing the results of a single test. In this case the chain tested
was the Monte Carlo simulation of a far detector cosmic ray events. The chain was composed
of three tiers. The first, cry [6] is a cosmic ray Monte Carlo generator. The second pchits is the
limited reconstruction tier used in the calibration of the NOνA detectors. The third reco is the
detailed reconstruction of physics objects for use in oscillation background studies. In this case
the first two tiers passed the tests while the third failed. Details on the cause of the failure are
available to the user via the provided links.

Further details on the performance of each tier is provided in a linked page which displays
metrics such as CPU and memory usage as a function of time. An example of such a metric is
shown in figure 3. These interactive graphs are given context via the analysis of the timestamped
standard output message streams of each tier. Important events identified within the processing
are represented as coloured circles displayed on the metric charts at the corresponding time.
These provide the user with snippets of the message stream on mouse over.

Information on output files is provided in the summary table in terms of their total and
per event size. A further page visualises this in a lot more detail by providing an interactive,
zoomable starburst and treemap graphic. An example of this is shown in figure 4.

The benchmarking information reported by the tests is further utilised to forecast the future
computational needs of the experiment in terms of integrated CPU usage, memory footprint
and storage volume needed, which information allows NOvA to rapidly and accurately predict
their future needs and to plan production campaigns accordingly.

5. Conclusions
This paper has presented the NOνA software testing framework. The rigour enforced through
this flexible testing framework enables NOvA to rapidly verify configurations, results and
software and thus ensure that data is available for physics analysis in a timely and robust
manner.

Acknowledgements
The author acknowledges support for this research was carried out by the Fermilab scientific
and technical staff. Fermilab is Operated by Fermi Research Alliance, LLC under Contract
No. De-AC02-07CH11359 with the United States Department of Energy

References
[1] D. S. Ayres et al. [NOvA Collaboration], FERMILAB-DESIGN-2007-01.
[2] C. Green and J. Kowalkowski and M. Paterno and M. Fischler and L. Garren and others, J. Phys. Conf.

Ser.,396,022020 (2012).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062062 doi:10.1088/1742-6596/664/6/062062

4



Figure 3. The memory usage of one test visualised using the Bokeh python library [7]. The
coloured circles are displayed at times when important processing steps occur. These provide
the user with contextual information on mouse hover.

[3] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A 389, 81 (1997).
[4] Highcharts, http://www.highcharts.com/.
[5] Bootstrap, http://getbootstrap.com/.
[6] Hagmann C, Lange D, Wright D Cosmic-ray Shower Library (CRY), LLNL UCRL-TM-229453 Lawrence

Livermore National Laboratory. Avaliable at http://nuclear.llnl.gov/simulation/cry.pdf
[7] Bokeh, http://bokeh.pydata.org/en/latest/index.html.
[8] Data Driven Documents, http://d3js.org/.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062062 doi:10.1088/1742-6596/664/6/062062

5



Figure 4. A D3 [8] based graphic displaying the size of one data format produced during tests.
This graphic allows users to drill down to study the particular portion of the data format they
are concerned with.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062062 doi:10.1088/1742-6596/664/6/062062

6


