21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

First statistical analysis of Geant4 quality software

metrics

Elisabetta Ronchieri!, Maria Grazia Pia2, Francesco Giacominil
9 9

L INFN CNAF, Bologna 40126, Ttaly
2 INFN, Sezione di Genova, Genova 16146, Italy

E-mail: elisabetta.ronchieri@cnaf.infn.it

Abstract.

Geant4 is a simulation system of particle transport through matter, widely used in several
experimental areas from high energy physics and nuclear experiments to medical studies. Some
of its applications may involve critical use cases; therefore they would benefit from an objective
assessment of the software quality of Geant4. In this paper, we provide a first statistical
evaluation of software metrics data related to a set of Geant4 physics packages. The analysis
aims at identifying risks for Geant4 maintainability, which would benefit from being addressed
at an early stage. The findings of this pilot study set the grounds for further extensions of the
analysis to the whole of Geant4 and to other high energy physics software systems.

1. Introduction

Geant4 [1, 2] is a simulation system that is used in a wide variety of scientific contexts, including
critical applications. As a mature (20 years old) software system, it is an ideal playground to
study metrics and metrics tools addressing the maintainability of large scale high energy physics
software systems over the range of decades.

The issue of software maintainability is especially relevant for such a widely used, mature
software system. To evaluate the maintainability of Geant4 software, we used existing standards,
such as ISO/IEC 25010:2011 [3], which identifies the relevant software characteristics, and we
exploited a set of product metrics - aggregated in the program size, code distribution, control
flow complexity and object-orientation metrics categories - which allow appraising the code
state. By using various software metrics tools (such as Imagix4D [4] and Understand [5]), we
were able to collect a large amount of measurements that characterize the software.

This paper reviews the adopted methodologies to perform this research and documents a
series of release measurements. The analysis uses the RStudio development environment [6]
for R [7]. In doing this, there is the intent to identify potential risks and provide the Geant4
maintenance team with useful information.

The remainder of this paper is structured as follows. Section 2 details the research
methodology. Section 3 describes the data analysis methodology, whose results are shown in
Section 4. Finally Section 5 presents conclusions detailing future work.

2. Research Methodology
The following steps describe the methodology we used to perform this research:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

Step 1 established software quality standard, ISO/TEC 25010:2011 (former ISO/IEC 9126) [3],
were used to identify software characteristics related to the maintainability factor;

Step 2 software metrics tools were identified and evaluated to collect a large amount of
measurements of software characteristics;

Step 3 a set of product metrics were exploited to assess the code state.

2.1. Step 1: Software quality standard

There are many views of software quality. The IEEE defines quality as “the degree to which
a system, component, or process meets specified requirements or customer or user needs or
expectations” [8]. The International Organization for Standardization (ISO) [9] defines quality
as “the degree to which a set of inherent characteristics fulfils requirements”. Other experts
define quality based on conformance to requirements and fitness for use. However, a good
definition must lead us to measure quality meaningfully.

According to Fenton and Pfleeger [10], “measurement is the process by which numbers or
symbols are assigned to attributes of entities in the real world in such a way as to describe
them according to clearly defined rules”. A possible way to measure software is to use software
metrics. The IEEE defines software metrics as “the quantitative measure of the degree to which
a system, component or process possesses a given software attribute” [8] related to quality factors
(also told characteristics). On the one hand, measurement allows us to know if the quality of
the software improves over time, to know how process quality affects the product, to determine
the quality of the current product or process, to predict qualities of a product or process. On
the other hand, software metrics allow us to estimate the cost and schedule of future projects, to
evaluate the productivity impacts of new tools and techniques, to establish productivity trends
over time, to improve software quality, to anticipate and reduce future maintenance needs.

Software quality standards describe software quality models categorizing software quality into
a set of characteristics. About software attributes, the ISO/IEC 25010:2011 standard defines
six software factors, each subdivided in sub-characteristics (or criteria) [3]. The quality factors
include: functionality, reliability, usability, efficiency, maintainability, portability. In the study
reported in this paper we consider maintainability. The concern of maintainability is anything
that helps with identifying the cause of a fault and then fixing the fault. Maintainability is
affected by code readability or complexity, as well as by modularization.

2.2. Step 2: Software metrics tools

Several commercial and free tools are available, which calculate a variety of software metrics.
Some software metrics are not univocally defined: therefore, they favour different interpretations
and include various implementations in metrics tools that produce non-comparable values.
Consequently, it is essential to consider more than one of these tools to gather as many
measurements as possible and evaluate their role in scientific software.

Since Geant4 is written in C++4, we chose tools that mainly support that language. A survey
of tools used in this analysis is reported in [11]; with respect to this initial list, for the analysis
reported in this paper we replaced non-supported tools, such as CCCC (C and C++ Code
Counter) [12], Pmccabe [13] and Unified CodeCount [14], with new ones, such as Imagix 4D
and SourceMonitor [15]. CLOC v. 1.60 counts blank lines, comment lines and physical lines
of source code. SLOCCount v. 2.26 computes Source Lines of Code. Understand v. 3.1.278
is a static analysis tool. Imagix 4D v. 8.0.4 analyzes, documents and improves complex, third
party or legacy C, C++ and Java software. SourceMonitor v. 3.5.0.306 is a source code metrics
measurement tool.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

2.8. Step 3: Software product metrics

We grouped the metrics according to file, class and function with respect to the type of
information provided by the used software metrics tools. For each group, metrics are then
categorized by size [16], complexity (such as McCabe [17] and Halstead [18]), object-orientation
(from Chidamber and Kemerer (CK) [19]). Tables 1, 2 and 3 show a set of metrics that belong
to the various groups. Furthermore, we also took into account metrics that can be useful to
determine ratio information, such as Number of Files N Fr;;. and Number of Classes NCp;ie.

Table 1. Some metrics of the size group

Group Size Metric Source
Comment Ratio (CRpjie) Lorenz
Declarations in File (NODp.) Lorenz
File Size (bytes) Lorentz
Lo . Comment Ratio represents the ratio of the lines of
Functions in File (NOFpie) Lorenz comments to the lines of source code in the file.
File Lines in File (TLOCpy.) Lorenz
Lines of Source Code (SLOCpi.) Lorenz NOD is the number of top-level declarations in
e the file, including types, variables, functions and
Lines of Comments (CLOCFE.) Lorenz macro defines.

Number of Statements (NOSg;.) Lorenz
The definitions of the other metrics are evident.

Variables in File (NOVp;e) Lorenz
Lines in Function (T'LOCF) Lorenz
Function (F) Lines of Source Code (SLOCF) Lorenz
Variables in Function (NOVF) Lorenz

Table 2. Some metrics of the object-oriented group

Lack of Cohesion of Methods (LCOM) is a measure of the cohesion

Group Object-Oriented Metric Source of the member functions of the class.

Class Cohesion (LCOM) CK Coupling Between Object (CBO) measures the coupling, or
Class Coupling (CBO) CK dependency, of the class.

Class Depth of Inheritance (DIT) ~ CK B;”st.measures the depth of the hierarchy of base classes of the
Number of Children (NOC) CK NOC provides the number of classes directly derived from class.
Response for Class (RFC) CK RFC measures the number of methods called by the class methods.
Weighted Methods (WMC) CK WMC provides the total cyclomatic complexity for the class

methods.

2.4. Preliminary scope of the analysis
Initial appraisals [11] concern a subset of Geant4 packages with a key role in scientific
applications:

The Geometry package makes it possible to describe a geometrical structure and to navigate
through it. In turn, it includes a set of sub-packages such as biasing, divisions, magnetic
field, management, navigation, solids and volumes. Any simulation application involves
some geometrical modelling of the experimental configuration.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

Table 3. Some metrics of the complexity group

Group Complexity Metric Source
File, Intelligent Content Halstead HI measures the amount of content (complexity) of the
(HI) file/function/class.
Function, Mental Effort (HE) Halstead HE measures the number of elemental mental discriminations
necessary to create, or understand, the file/function/class.
Class Program Volume (HV) Halstead
P Difficult Halstead HV measures the information content of the file/function/class.
rogram ifficulty alstea;
(HD) HD measures how compactly the file/function/class implements
its algorithms.
File, Average Cyclomatic McCabe B
Complexity (MACC)
a1 Maxi Cvel . McCab MACC, MMCC and MTCC measures the average, maximum and
ass C axmllup.r; (K/B\Zglgt)lc cloabe total cyclomatic complexity for all methods in file/class.
omplexity
’(Ij‘otall it ?K/F?éng;mc McCabe MI measures the maintainability of the file [20], incorporating
omprexity source code metrics into a single number.
File Maintainability Index Welker
(MD McCabe v(G) represents the number of decision points in the
McCabe Cyclomatic McCabe function.
Complexity (v(G)) McCabe Decision Density measures decision density (cyclomatic
McCabe Decision Den- McCabe density) of a function.
sity McCabe ev(G) represents the number of decision points in the
McCabe Essential McCabe function which contain unstructured constructs.
. Complexity (ev(G)) McCabe Essential Density measures essential density, or degree of
Function McCabe Essential Den- McCabe unstructuredness, of a function.
sity

The Processes package handles particle interactions with matter. Like the geometry pack-
age, it comprehends a set of sub-packages such as biasing, cuts, decay, electromagnetic,
hadronic, management, optical, parameterisation, scoring and transportation. Electromag-
netic physics represents the core of particle transport, as almost any simulation scenario
involves electromagnetic interactions either as primary or secondary particles.

The PhysicsLists package contains selections of physics processes and modelling options.

3. Data Analysis Methodology
The following steps describe the methodology we used to perform data analysis:

Step 1 consolidate data;

Step 2 use descriptive statistics for each release to get the distribution (mean and median),
variance (standard deviation) and quantiles of each measure;

Step 3 adopt correlations between metrics to eliminate metrics that do not provide additional
insights;
Step 4 identify thresholds from metrics analysis.

Step 1 is the most important one. Data it not always presented in one table, but it is in
several files that: need to be merged; may include information that is not necessary or unclear;
exist on different format. Steps 2 and 3 allow us to identify a minimal, non-redundant set of
metrics that is meaningful for our analysis. As a result, it is possible to identify areas with
potential design problems and establish quality benchmarks. Step 4 is the most challenging one.
The literature details thresholds of software goodness that are derived from specific domains,
such as aerospace, telecommunication and student exercises. However, these studies are quite

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

old and may not reflect the evolution of the programming languages; moreover, they may reflect
domain-specific characteristics; therefore, they cannot be blindly applied to the high energy
physics field.

Due to the large amount of data involved, only the first two steps are detailed in this paper
to fit within the page limit constraints of these proceedings. The full information and related
discussions will be documented in a dedicated journal publication.

4. A Sample of Analysis Results

We applied our methodology to a fairly representative set of Geant4 software releases. This set
includes 31 releases for Geometry and Processes, and 16 releases for PhysicsLists, which was
first introduced in the Geant4 release 7. Furthermore, for the release that comprises at least
one patch we only considered the last one, as shown in Table 4. In the following we will refer to
each metric by using its acronym followed by a specific index with respect to the corresponding
package, such as g for Geometry, p for Processes and pl for PhysicsLists.

Table 4. The Geant4 software releases

Number Name Year | Number Name Year
1 0.0.p04 1999 17 7.0.p01 2005
2 0.1 1999 18 7.1.p01 2005
3 1.0 1999 19 8.0.p01 2006
4 1.1 2000 20 8.1.p02 2006
5 2.0.p01 2000 21 8.2.p01 2007
6 3.0 2000 22 8.3.p02 2008
7 3.1 2001 23 9.0.p02 2008
8 3.2 2001 24 9.1.p03 2008
9 4.0.p02 2002 25 9.2.p04 2010
10 4.1.p01 2002 26 9.3.p02 2010
11 5.0.p01 2003 27 9.4.p04 2012
12 5.1.p01 2003 28 9.5.p02 2012
13 5.2.p02 2003 29 9.6.p04 2015
14 6.0.p01 2004 30 10.00.p04 2015
15 6.1 2004 31 10.01.p01 2015
16 6.2.p02 2004

For each package we derived metrics considering the groups: file, class and function. At each
group, we adopted the metrics detailed in Tables 1, 2 and 3 due to their use in determining
the maintainability software characteristic [21]. In this paper, we report measurements mainly
calculated with the Imagix 4D tool.

At this stage of the analysis, we did not apply any special treatment to outliers. This subject
will be studied in depth in the next stage of the analysis.

A prevalent technique to visualize a distribution is to plot a histogram. However, it has
several shortcomings: the choice of the bins affects the shape of the histogram, which may cause
misinterpretations of data; the distributions of two metrics are difficult to compare when they
have different sizes. To overcome these problems, an alternative way to clearly examine the
evolution of data over release (i.e. time) is to use the box-plot [22]. In this case, the x-axis
depicts groups of numerical data through their quantiles and the y-axis represents the metric
values and some other statistical information.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

The Geometry package has a number of source files in the range [501, 697] over release. The
overall total amount of lines (TLOC) examined is near 5 million. CLOC € [32K, 59K]| and
SLOC € [50K, 116K] are the measurements obtained in the various releases. The comment ratio
(CRy) (see Figure 1) highlights that there not always exists a one-to-one correspondence between
increasing lines of code and comment lines. Figure 1 shows vertical peaks in two directions -
upwards for release numbers 8 and 14, while downwards for release numbers 5 and 30 - whose
reasons are justified in the respective release notes. The maintainability index (M) (see Figure
2) highlights the presence of anomalous files - those below the lower whiskers - which will require
more careful examination.

Processes is a large package with a number of source files in the range [840, 3492] over release.
The overall total amount of lines (TLOC) examined is 13 million. CLOC e [25K, 222K] and
SLOC € [138K, 469K] are the measurements obtained in the various releases. This package
exhibits the same behaviour of Geometry regarding the comment lines of code. Figure 3 shows
vertical upwards peak for release number 8, whose reasons are justified in the respective release
notes. Concerning M, (see Figure 4), this has a similar trend to that shown in Figure 2, but
the large amount of code increases the number of anomalous files.

PhysicsLists is a small package with a number of source files in the range [203, 410] over
release. The overall total amount of lines examined (TLOC) is 430 thousand. CLOC € [6K,
17K] and SLOC € [8K, 23K] are the measurements obtained in the various releases. Referring
to CRy;, Figure 5 shows vertical upwards peaks for release numbers 19 and 25, whose reasons
are justified in the respective release notes. The maintainability index (M) (see Figure 6)
highlights the presence of anomalous files, which will require further in-depth study.

Table 5 summarizes the prevalent object-oriented metrics at class group for the three packages.
The reported ranges are for the maximum value determined from their distributions.

Table 5. The Geant4 object-oriented measurements with NC, € [244,362], NC),, € [438,2046]
and NC,; € [127,264]

Package DIT NOC CBO LCOM RFC WMC | MMCC
Geometry 3 [10,18] [10,17) [266,677] [46,98] [38,137] | [11,31]
Procesess [2,3] [30,66] [23,52] [435,2168] [47,133] [36,101] | [18,33]
PhysicsLists 1 [10,18] [6,14] [99,114] [61,80] [57,65] | [19,47]

5. Conclusions
With this work we aim to build a data set of measurements about Geant4 software in order to
evaluate its quality.

In this study we considered the Geometry, PhysicsLists and Processes packages, which play a
major role in a wide range of experimental applications. After selecting suitable software metrics
tools, such as Imagix 4D and Understand, we used them to collect data. The use of descriptive
statistics allowed us to perform an initial analysis on the various Geant4 software releases from
0.0 up to 10.01.p01 to identify the evolution of the software characteristics over time.

An analysis of the correlations among the various metrics is in progress with the goal to retain
a sample of meaningful metrics. The analysis of the metrics will contribute to identifying parts of
Geant4 that would benefit from close attention regarding future maintainability. Furthermore,
we will work on the identification of appropriate thresholds and ranges associated with the risk of
maintainability of the software. This study will take into account the peculiarities of high energy
physics software, which may be different from the characteristics of other software domains for
which such estimates are documented in the literature.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing

Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053
e | rrTrrer
0357 ‘et ennes 150 o Giiiidd
oo
g s R
0.30 ° 100
8 =S ”H‘l:ll: TEERRERE “111”
s TEE éSo*ooooooioQ“Obb
0.25 ..’°°‘ 50 ggggégééggggoooooo000000000000
®eoe
°° 0 - 000000000
FTTTTTT T TTTTT T T T T T T T T T T T T T T T TTTTTTTTTT TT T T T T T T T T T I T T T I I
1 4 7 10 14 18 22 26 30 1 4 7 11 15 19 23 27 31
Release Number Release Number
Figure 1. CR, over release. Figure 2. M, over release.
150 R
0.25 ariiarick FIETE ||||||||Hr|nuuu||| SRR
oo HHHHHHHU R
& s RS EEERRE
0.20 ¥ REREEE
uuwuo@gog@uééguuww Ll
-4 0 Q00
s gagsassaasaimseashiaInygestd
0 15 _ 000000000000 0000
0000
FTTTTTTTTTTTTT TT T T T T T T T T T T T T T T FrTTTTTTTTTTT T T T T T T T T T T T T T T TITIT I
1 4 7 10 14 18 22 26 30 1 4 7 11 15 19 23 27 31
Release Number Release Number
Figure 3. CR, over release. Figure 4. M1, over release.
5 160 755 —
0.40 ooooog§§%% '
. 4T T T TTT O
0.39 7 . 140 --illlliiillil‘
_| ° ® o d e e .. ‘ II
o038 . 120 0Ll iE III
©0.37 - . L U i o
leceboBBogyg |
0.36 100 © @ CN
0.35 000 o g 008@§é#¢
°o o 80 008800 o0 8
I I
17 19 21 23 25 27 29 31 17 19 21 23 25 27 29 31
Release Number Release Number
Figure 5. C'R), over release. Figure 6. M1, over release.
Acknowledgements

The authors acknowledge Imagix Corporation that provided extended free full license for
performing this work, and Scitool and their European partner Emenda (www.emenda.eu) that

7

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062053 doi:10.1088/1742-6596/664/6/062053

provided several evaluation licenses for relevant metrics. Furthermore, they are particularly
grateful for the prompt support given by Gabriele Cosmo (CERN) during the research.

References

[1] Agostinelli S and et al 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment vol 506 n 3 p 250-303

[2] Allison J and et al 2006 IEEE Trans. Nucl. Sci vol 53 n 1 p 270-278

[3] ISO/IEC 25010:2011, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=35733

4] Imagix 4D, www.imagix.com

5] scitools Understand, https://scitools.com

6] RStudio, http://www.rstudio.com/products/rstudio/

7] R, ”The R Project for Statistical Computing”, http://www.r-project.org/

8] IEEE, 7610.12 - 1990 - IEEE Standard Glossary of Software Engineering Terminology”, December 1990.

9] ISO 9000 - Quality Management, http://www.iso.org/iso/iso_9000

10] Fenton N and Bieman J 2014 Chapman & Hall/CRC Innovations in Software Engineering and Software

Development Series (CRC Press) p 1-67
[11] Ronchieri E and Pia M G and Giacomini F 2014 Proceedings of the 18th Topical Meeting of the Radiation
Protection € Shielding Division of ANS, RPSD 2014 Knoxville Tennessee USA September 14-18.
] CCCC, http://cccc.sourceforge.net/
| Pmccabe, http://people.debian.org/
| Unified CodeCount, http://sunset.usc.edu/research/CODECOUNT/
| Campwood Software, SourceMonitor, www . campwoodsw. com
| Lorenz M and Kidd J 1994 Object-Oriented Software Metrics: A Practical Guide (Prentice-Hall)
] McCabe T J 1976 IEEE Transaction on Software Engineering vol SE-2 n 4
| Halstead M H 1977 Elements of Software Science (Elsevier, North-Holland Inc.)
| Chidamber S R and Kemerer C F 1994 IEEE Transactions on Software Engineering vol 20 n 6
| Welker K D 2001 The Journal of Defense Software Engineering
] Lincke R 2007 Licentiate thesis MSI (Vaxjo University)
| Weissgerber T L and Millic N M and Winham S J and Garovic V D 2015 PLOS Biology

