
ROOT6: a Quest for Performance

Danilo Piparo

CERN CH-1211, Switzerland

E-mail: danilo.piparo@cern.ch

Abstract. The sixth release cycle of ROOT is characterised by a radical modernisation in
the core software technologies the too kit relies on: language standard, interpreter, hardware
exploitation mechanisms. If on the one hand, the change offered the opportunity of consolidating
the existing code base, in presence of such innovations, maintaining the balance between full
backward compatibility and software performance was not easy. In this contribution we review
the challenges and the solutions identified and implemented in the area of CPU and memory
consumption as well as I/O capabilities in terms of patterns. Moreover, we present some of
the new ROOT components which are offered to the users to improve the performance of third
party applications.

1. A Big Change: CINT to Cling
The ROOT [1] tool kit featured from the very beginning a C++ interpreter. Until the sixth
ROOT release cycle, the interpretation of C++ code was delegated to CINT [2], an interpreter
covering most of ANSI C (including C99) and ISO C++03. Despite the rich set of functionalities
CINT offers and the success it had during years of production usage, it is not adequate to cope
with the new C++ standards, most notably C++11. This limitation is a a blocker for the
support of refection and I/O in presence of user classes and data models written according to
the newest C++ paradigms and does not allow to evolve the interfaces of the components of
ROOT itself beyond C++03.

The solution adopted to overcome this hurdle was to replace CINT with the Cling [3]
interpreter, based on the LLVM compiler infrastructure [4]. This transition represents a veritable
advancement in the software technologies leveraged by ROOT. For example, Cling is the first of
its kind, offering just in time compilation of C++ code. The challenges involved in this evolution
were many. Entire ROOT components had to be rewritten to comply with the interfaces offered
by the new interpreter, notably the type system. All the features existing in ROOT 5 had to
be supported as well as an ambitious set of new ones. All of this under the scrutiny of a large
user base. This user base includes also systems consisting in millions of lines of code in which
ROOT is integrated, for example the software stacks of the LHC experiments.

This kind of investment is an opportunity. It allows to study and improve the strategies
adopted to evolve scientific software, for instance with agile techniques.

2. Clang, the AST and ROOT
The C++ front-end of LLVM, Clang, provides a very efficient implementation of an Abstract
Syntax Tree (AST). This entity holds all the information expressed in the source code, like

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



classes, functions, templates and statements. This data structure can be persisted on disk in
two forms, the Pre-Compiled Header (PCH) and the Pre-Compiled Module (PCM) - see figure 1.

Figure 1: The PCMs can be considered for interfaces the entity which corresponds to libraries for
implementations. They are a condensed version of a consistent set of headers Clang can create.
While the Objective-C PCMs could be created, the time scales relative to the technology for the
creation of C++ PCMs were not compatible with the LHC long shut down plans.

The former can be thought as a cache for header files. Only one PCH can be loaded at runtime
by the compiler. The latter has on the other hand has the granularity of single AST nodes and
many PCMs can be loaded by the compiler during one invocation. A relevant commonality
between the two formats is that they can be queried lazily by Clang.

The original design of ROOT 6 is shown in figure 2. It relies on the presence of both PCHs
and PCMs for the C++ language with the objective to leverage the information contained there
for reflection, I/O and interactive function calls.

Figure 2: Simplified sketch of the ROOT 6 design. At library load time a connection is
established between the PCM relative to a dictionary and the interpreter. Reflection information
contained in PCMs and PCH is queried lazily by the interpreter. Dictionaries are a thin layer
to interface the interpreter and the persisted AST nodes.

3. A Change of the Original Design
C++ PCMs were a bleeding edge technology during the creation of ROOT 6 and a sturdy
implementation of this concept by the Clang team by the beginning of the LHC Season 2 was

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

2



expected. Unfortunately, the arrival of PCMs was delayed. Without a persistent representation
of the portion of the AST relative to each single dictionary, all headers had to be parsed at
runtime (see figure 3), with significant penalties both in terms of runtime and memory footprint.

Figure 3: In absence of PCMs, the only way to make known to the interpreter the interfaces of
the entities implemented in the library is to parse all the headers. Clang, as every other compiler,
offers optimised mechanisms for parsing quickly and efficiently source code. Nevertheless the
impact on the runtime and memory footprint for complex systems like the LHC experiments’
software stacks was measured to be severe. Parsing needed to be reduced.

In order to reduce header parsing to the bare minimum and increase performance of ROOT,
two strategies were adopted.

The former is relative to the treatment of the information necessary for I/O. The description
of the layout of the classes was extracted from the AST during the generation of the dictionaries
and persisted in special ROOT files, called “ROOT-PCMs”. At library load time the ROOT-
PCMs are read and the information directly injected in the ROOT type-system as shown in
figure 4.

The latter is relative to the interactive usage and is called “parsing on demand”. The header
relative to a certain dictionary were not parsed in bulk at loading time, but the parsing is delayed
until a function implemented in the library has to be called.

4. The Profiling Toolbox
In order to study the performance figures of ROOT 6, different profilers were used. The main
ones were IgProf [5], the Valgrind [6] suite and some other simpler solutions described in the
following.

The IgProf profiler was chosen both for memory and runtime studies. The main reason was
the very little overhead imposed to the running application and the possibility to “snapshot”
counters at any given point in time, for example, in the context of LHC data processing, when
transitioning from one event to the other. The possibility to share reports via its web interface
was also extremely useful to exchange information among the ROOT and the experiments’
experts.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

3



Figure 4: The ROOT PCM is a ROOT file the format of which is optimised to guarantee
maximum reading speed. It contains the information necessary to perform I/O of objects, e.g.
the layout of selected classes and is created together with dictionaries.

Of the Valgrind family, both Callgrind and Massif were considered. The former for the
measurement of very short executions (see for example section 7), the latter to complement
IgProf for the measurement of memory footprints.

It is worth noting that other effective strategies were adopted. For example, Kernel data
structures were queried via the TSystem::GetProcInfo in order to be able to print on screen
the memory footprint before and after the invocation of a certain method. This kind of simple
approaches certainly does not scale to complex systems (and is not meant for those) but it is
necessary to get overall impressions of the performance figures before running more complex
profilers.

5. Performance Figures: the CMS Case
The solutions mentioned in section 3 were not enough to fit the new ROOT within the version 5
envelope. Several improvements in all corners of the tool kit were put in place and properly
validated but their characterisation is beyond the scope of this document.

In order to show the effect of the aforementioned improvements, the runtime and memory
consumption of ROOT 6 and ROOT 5 are compared using production CMS work flows. The
software stacks are identical up to the ROOT version integrated. Two processes have been
studied, the simulation of pp → tt̄ events at a centre of mass energy of 13 TeV and their
reconstruction. The runtime of the event loop is identical in the two cases. The RSS memory
consumption of ROOT 6 compared with the one of ROOT 5 is: 6% smaller for generation and
simulation and 4% bigger for reconstruction.

6. Ensure Correctness: Testing
A fully automated test suite featuring a complete coverage is necessary for a campaign aiming
to increase software performance to succeed. Developers must always be in condition to verify

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

4



Figure 5: Some of the results displayed by the official web interface of the ROOT builds
and testing status: http://cdash.cern.ch/index.php?project=ROOT. The first two lines are
relative to builds on 64-bits ARM systems.

correctness after operations such as improvement of an algorithm or data structure as well as
the introduction of new compilers or external tools. A significant effort was invested in the
expansion of the ROOT test suite (see figure 5) in order to both increase coverage and check
correct functioning of all external plug-ins, for example Davix or xRootd. The goal was to target
test driven development. A particular attention was also dedicated to the growth of supported
hardware architectures (x86 64, ARM, Power PC LE) and operating systems (various Linux
distributions, OsX, Windows).

7. Caring About Details: Start up Time
For a tool kit like ROOT, the attention cannot be focused only on the integration in large
software systems (see section 5): every detail counts. This is the reason why work was invested
to improve the very first feature seen by a user: the start up time of ROOT. See figure 6.

Figure 6: Start up time of ROOT in ms versus the tool kit version. A steady improvement is
clearly shown.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

5



The ingredients behind this reduction are the caching of the I/O information of all most
used ROOT classes as well as STL interfaces in the PCH file, the usage of the unordered STL
containers and a redesign of the format of the “ROOT-map” files which hold the meta data
exploited by ROOT to manage automatic loading of plug-ins at runtime.

8. Leveraging Modern Compilers
Up to now only algorithmic and design changes aiming to performance increase were mentioned.
On the other hand, the so called “technical” improvements can greatly influence the runtime
behaviour of scientific applications. The current CMake [7] based build system of ROOT, allows
to optionally enable the maximum level of optimisation allowed by both Clang and GCC [8],
including the non IEEE compliant treatment of floating point numbers. These optimised builds
are also useful from the testing point of view. Indeed they allow to check the numerical stability
of the code of ROOT. The results of this runtime improvement is illustrated in figure 7.

Figure 7: Results of the StressHepix benchmark of ROOT. The result is expressed relative to the
runtime performance of the optimised build, the higher the better. Three optimisation levels are
studied: debug, optimised and fast. They roughly correspond to the “-O0”,“-O2” and “-Ofast”
GCC flags. The compiler used was GCC 4.9.2.

9. Conclusions
ROOT 6 offers, in addition to its Clang and LLVM based interpreter Cling, many new features
while granting backward compatibility: the performance figures are fitting the envelope of the
previous ROOT release cycles, therewith leaving the floor to a future steady development of the
tool kit.

The migration from CINT to Cling has clearly shown that agile principles are an asset when
betting on cutting edge software technologies and that close collaboration with users and clients
is a clear benefit for software projects of the size of ROOT.

The requirements set by the LHC experiments were satisfied but room for further
improvement in the area of performance is still left. The quest for performance will continue,
for example introducing even more sophisticated containers in the ROOT core components,
exploiting more vectorisation and improving the integration of the tool kit with software profilers.

References
[1] Brun R et al. 1997 Nucl. Inst. Meth. In Phys. vol 389
[2] Goto M C++ Interpreter - CINT CQ publishing ISBN4-789-3085-3
[3] Vassilev V et al. Cling The New Interactive Interpreter for ROOT 6 2012 J. Phys.: Conf. Ser. 396

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

6



[4] LLVM http://llvm.org
[5] Eulisse G Tuura L IgProf profiling tool Proc. CHEP04, Computing in High Energy Physics, Interlaken
[6] Nethercote N Seward J Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation

Proceedings of ACM SIGPLAN 2007
[7] CMake http://www.cmake.org
[8] The GNU Compiler Collection https://gcc.gnu.org

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062049 doi:10.1088/1742-6596/664/6/062049

7


