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Abstract. The successful exploitation of multicore processor architectures is a key element
of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup
complex-collision events represent a challenge for the traditional sequential programming in
terms of memory and processing time budget. The CMS data production and processing
framework is introducing the parallel execution of the reconstruction and simulation algorithms
to overcome these limitations. CMS plans to execute multicore jobs while still supporting single-
core processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy
for job management thus aims at integrating single and multicore job scheduling across the
Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of
the allocated resources, capable of running payloads of various core counts simultaneously. An
extensive test programme has been conducted to enable multicore scheduling with the various
local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible
during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the
performance of this scheduling strategy and ensure an efficient use of the distributed resources.
This paper presents the evolution of the CMS job management and resource provisioning systems
in order to support this hybrid scheduling model, as well as its deployment and performance
tests, which will enable CMS to transition to a multicore production model for the second LHC
run.

1. Multicore jobs for CMS during LHC Run 2
LHC experimental collaborations have dedicated a significant part of their programming efforts
in recent years into developing multithreaded applications running on more than one processor
core. The motivation for this comes, firstly, from the evolution of computer hardware, as over
the last decade single-core CPUs have reached the limit in processor speed. Continuing to
enhance the overall CPU performance therefore has progressed by adding more processor units
to the CPU (cores). Secondly, the anticipated experimental conditions of the second LHC run
(scheduled to start in Summer 2015) of higher energy and luminosity, imply the need to process
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increasing data volumes with increasing event complexities. This results in higher per-event
processing time and memory usage as compared to the conditions during LHC Run 1. In this
context, multicore applications aim at fully exploiting the capabilities of current multicore CPU
architectures, in order to, for example, reduce memory consumption per core [1].

Evolving LHC experiments computing to use multicore CPUs scattered across the Grid has
required not only to adapt the applications themselves but also the development of new resource
allocation and scheduling tools and procedures, the latter being the main focus of this paper.
This evolution has happened during the long shutdown period of the LHC (2013-2014) in parallel
to the upgrades of the collider and of the detectors, all needed to continue pushing the boundaries
of High Energy Physics in the coming years.

The CMS priority in the deployment of multicore resources for the start of data taking for
the LHC Run 2 is to provide sufficient computing power to perform multithreaded prompt data
reconstruction tasks. These workflows will be processed at the Tier-0 (T0) and Tier-1 sites
(T1s), as they are estimated to require T0 plus 50% of the T1 available CPUs [2]. Thus, for
the first phase of multicore deployment in 2015, the focus is on T0 and T1s sites. Simulation
and digitisation tasks will then be switched to multithreaded algorithms as well, which will then
require the deployment of multicore resources to CMS Tier-2 sites. In any case, single core and
multicore jobs will coexist during Run 2, therefore a strategy for scheduling both types of jobs is
mandatory. CMS model foresees the use of multicore pilots (see next section) to manage 100%
of the resources at the sites, starting with the T0 and T1s in 2015.

This document is organized as follows: section 2 describes the infrastructure and strategy
developed by CMS to support a simultaneous scheduling of single core and multicore jobs.
Section 3 summarizes the scale tests conducted in order to examine the validity and performance
of such a model. Finally, section 4 presents the conclusions from this study and the outlook for
future developments towards the imminent restart of the LHC in 2015.

2. CMS workload management and submission infrastructure
The CMS workload management (WM) system, dedicated to centralized workflows such as data
reconstruction and the generation of simulated events, is based on the concept of WMAgents [3].
A series of nodes under supervision of CMS WM team of operators, handle tasks such as workload
splitting into jobs, job assignment to the appropriate list of computing sites, job prioritization,
retrial of unsuccessful jobs and merge of output files and log collection. Resource allocation
is performed by the CMS submission infrastructure (SI), which employs GlideinWMS [4, 5], a
tool built on top of the HTCondor [6] batch system that matches jobs to resources managing
a transient pool of computing resources controlled by so-called pilot jobs, which schedule user
jobs in a pull mode.

Both elements are integrated in the schema summarized in Fig. 1. WMAgents populate
central job queues. The GlideinWMS front-end machines perform a first stage of matching,
contacting the factory machines, which submit pilots to all grid sites matching job description
request. Pilots enter the queues at the local batch systems. Running pilots define a virtual pool
of computing job slots. A second stage of match-making, of jobs to pilots, is then handled by the
negotiator machines. Workload is finally pulled to the worker nodes (WNs) local to a specific
site. See [7] for a detailed explanation of the integration of the different types of workloads and
resources into the so-called Global Pool framework.

CMS main tool for the integrated scheduling of jobs with different core requests are multicore
pilots, designed to control several batch slots and featuring a dynamic partitioning of the
allocated resources [8]. Pilots take N slots from the local batch system and then arrange M
internal slots according to job requirements. In the example shown in Fig.2, a single pilot
managing 4 cores in a WN has split its resources initially to pull two jobs requesting 2 cores
each. When the first 2-core job ends, the slot is divided into 2 sub-slots, used subsequently by 2
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Figure 1. Schema of the current CMS workload management and submission infrastructure.
See text for detailed description.

Figure 2. CMS multicore pilot for mixed single and multicore job scheduling strategy. See
text for detailed description.

single-core jobs. When the second 2-core job ends, a third 2-core payload, with higher priority
relative to single core jobs, is pulled and executed. After that point, in this example, the pilot
resources are taken by single core payloads until the pilot lifetime ends.

The main advantage of a fully multicore pilot model is that CMS would gain total control
on the scheduling priorities of single and multicore jobs, from production to analysis jobs, in
line with the move of the submission infrastructure to the unified Global Pool described in [7],
optimizing the use of the resources according to CMS needs. Also, not using single core pilots
avoids them competing with multicore pilots for resources at the sites. As single core pilots
are naturally easier to schedule, they may tend to exhaust the global share of CMS at the site.
In this case, depending on the configuration of the local batch system, little or no multicore
resource allocation may be achieved. Single core pilots compete as well with multicore pilots for
jobs in the pilot-job negotiator, which can potentially reduce the overall occupancy of slots in
multicore pilots. Finally, going to 100% multicore pilots also reduces slot negotiation times, as
it helps in reducing the number of pilots the system needs to control, thus preventing potential
scalability issues of the infrastructure.

Multicore pilots also present disadvantages. Inefficient use of the cores is observed at the end
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Figure 3. Simulation of efficiency in the use of cores by multicore pilots running single core
payloads due to resource draining versus relative pilot to payload average running times, for
different multicore pilot core counts. See text for detailed description.

of pilot lifetime, as pilots drain their resources before exiting the WNs. This draining period
lasts as long as the longest running job takes to finish, the rest of cores waiting unused. This is
a fundamental difference to single core pilots, which release their resources as soon as their only
payload finishes. A simulation of this effect is shown in Fig. 3, with jobs of lengths according
to a gaussian distribution, representing jobs of similar duration with certain spread such as
production jobs, filling up slots of a multicore pilot until the pilot starts draining. Pilot running
time is considered as multiples of the mean job running time. The scheduling inefficiency is
then calculated as the fraction of resources unused over the whole pilot length. Multiple toy
experiments are run and the average value is taken for different multicore pilot sizes (4, 8, 16)
and as a function of the relative pilot to job length parameter (T retire time/mean job length).
As observed, the higher the number of cores managed by the multicore pilot, the higher the
draining inefficiency, and as expected, the longer the job duration compared to the pilot retire
time, the larger the draining inefficiency. As a reference working point, 8-core pilots running
single core jobs would be 95% efficient or higher when running on average 10 times or longer
than the average payload.

Another disadvantage of allocating remote resources by multicore pilots is that the ramp up
of multicore slots at a site after an idle period would be much slower than in the case of single
core slots. The reason is that sites create multicore slots by draining their WNs of single core
running jobs. Typically, a site would protect its farm from excessive draining (no more than
a few percent of the total resources at any given time) to avoid low average farm occupancy,
as they are in most cases responsible for the efficient use of the resources with respect to their
funding agencies. An example is shown in Fig. 4, which presents the total available cores for
multicore jobs for a period of a week at PIC, the Spanish Tier-1, for each of their users, CMS
and ATLAS (shown as T1 plus T2). After a period with no requests from either experiment,
multicore slots are returned to the single core pool, which is shown as a drop in the overall
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Figure 4. Total available cores for 8-core jobs for a period of a week at PIC site for CMS
T1(green), ATLAS T1 (blue) and ATLAS T2 (brown) jobs. Note the slow ramp up of resources
caused by the controlled draining of the WNs.

Figure 5. Pilot renewal as a source for defragmented resources. See text for detailed
description.

available cores. Then, new requests reach the site again, however the controlled draining of
WNs to create 8-core slots takes of the order of 4 days to reach a total of 1000 slots, comparable
to CMS pledged cores at PIC.

A successful model based on multicore pilots must be able to provide enough resources for
multicore payloads, preventing them from being used exclusively by single core jobs. As the
example shown in Fig. 2 illustrates, single core payloads, if present in sufficient numbers and
with higher priority relative to multicore jobs, would tend to exhaust the available resources of an
individual pilot (fragmentation). In the CMS model the problem of fragmentation is related
to the turn-over rate of finite-life pilots, as new pilots start with non-fragmented resources,
see Fig. 5. A model with a sufficient pilot renewal rate thus satisfies the condition of being
able to manage single core and multicore jobs simultaneously. The system however needs to
be tuned on a set of parameters (job prioritization, jobs and pilots running times, single and
multicore payload mixture, etc), so that forced pilot internal defragmentation, even if available
as a standard HTCondor tool (called defragmentation daemon)[6], should not be required.

Many of the computing sites supporting CMS, and in particular most of the T1s, share their
resources with other experiments, which may also be interested in running multicore jobs on
the same clusters. CMS multicore job scheduling model should not impose requirements on
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Figure 6. Multicore (8) pilots running single core payloads at PIC over a 3 day period: average
core occupancy as a percentage of the cores being used to the total of available cores (left) and
pilot distribution according to the number of occupied internal single-core job slots (right), from
empty (red) to fully loaded pilots (dark blue).

the sites which would result in additional inefficiency and complexity in resources configuration.
A WLCG task force[9], including representatives from sites and experiments, has been setup
with the aim of exploring best practices for the deployment and most efficient use of the shared
resources. One of the recommendations from the work of this group [10] is the use of a common
core-count for multicore requests submitted to the same cluster. This eliminates the need for
successive WN draining stages and allows to recycle empty multicore slots, preventing them from
being fragmented and also permitting the use of resources on a fair-share policy. The example
of PIC shown in Fig. 4 is the result of the agreement between ATLAS and CMS to use 8-core
pilots as a common general default. In practice, many sites have adapted their batch systems
on the basis of slot reutilization thanks to the use of a common core count, see for example
reference [11].

3. Model and infrastructure tests
The CMS job scheduling and resource allocation infrastructure has been incrementally adapted
in order to support the strategy described in the previous section. It has been repeatedly tested,
as T1s joined the pool of multicore-capable sites, in order to verify the integrated scheduling of
both multicore and single-core jobs, to study the fragmentation of resources and to identify any
inefficient use of resources deriving from the scheduling.

Multicore pilots internal allocation efficiency for single core jobs has been under careful
observation in order to measure the draining effect simulated and presented in Fig. 3. Figure
6 shows multicore pilots running single-core payloads at PIC for a particular period of activity
of several days with sufficient job pressure to saturate the allocated cores. Pilot running times
were about 40h long. Jobs running as internal payloads to the pilot, while presenting a wide and
irregular running time distribution, averaged at a few hours value. As a result, pilot internal
inefficiencies are measured to be small, with most pilots running fully loaded with 8 single core
jobs and an average overall utilization of the available cores of 94% for this period.

Global performance results have been obtained by pushing the system to reach to the scale
of the CMS target for 2015, i.e. 50% of the T1 resources, which should be available to be
used by multicore jobs. Prompt data reconstruction multicore jobs were injected from the T0
infrastructure targetting 18.000 CPU cores at all the CMS T1s (at KIT, PIC, CCIN2P3, CNAF,
JINR, RAL and FNAL sites). The test consisted of running 4-core jobs inside 8-core pilots, under
heavy workload pressure from single core jobs as well, for a period of about a week in March
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Figure 7. Results for the scale test of multicore prompt reconstruction jobs submission:
job slots occupied at CMS T1 sites by single and 4-core jobs (left) and distribution of running
multicore jobs across CMS T1s (right). A horizontal gray line appears in both plots as a reference
of the size of the global pool of resources pledged to CMS at the T1s, with about 18.000 cores
in total.

2015.
Results are presented in Fig. 7. The first and most obvious, yet important, observation

is that multicore job submission works, as the CMS infrastructure successfully submitted and
ran multicore jobs at all CMS T1s. The results are promising, close to the target overall, with
peaks of 8.000 cores being taken for multicore jobs and multicore payloads being continuously
processed, which implies a reasonable defragmentation rate, even with a very preliminary tuning.
In fact, it was later noticed that the WMAgents handling these workflows were not yet managing
mixed single core and multicore loads with correct job prioritization, assigning equal to priority
to both tasks. As multicore payload priority should in general be higher than that of single core
payloads, these results should not be regarded as the definitive performance of CMS model, but
as a step in the right direction, which can only improve with proper task prioritization.

It should also be mentioned that, even if the test was, overall, close to the target scale, the
results revealed noticeable variations from site to site. Work is ongoing at the time of writing
this report in order to study and improve pilot allocation to each of the sites to reach targets
at each site independently. This involves ensuring that GlideinWMS pilot factories produce
enough multicore pilot pressure for each site, and also that the local resource managers (T1s
batch systems), can handle this load appropriately.

4. Conclusions and outlook for future developments
As described in the previous sections, CMS will employ multithreaded applications for LHC Run
2, starting with the use of multicore jobs for prompt data reconstruction in 2015. This tasks will
require, in addition to T0 CPUs, about 50% of the pledged CPU job slots at the T1s. CMS job
management and submission system will integrate scheduling of single and multicore payloads
into multicore partitionable pilots. This tool is ready and the principle has been successfully
implemented and tested. Performance results show that scheduling inefficiency can be minimized
to a negligible level with a reasonable tuning of the system parameters. Finally, the target for
multicore resources at the T1s for 2015 has been already basically achieved, so CMS multicore
job submission infrastructure is essentially ready and looking forward to the restart of the data
taking.

Activities and milestones for the coming months include the optimization of site by site scale
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test results, the complete deployment of improved job and pilot performance monitoring tools
and the continuation of tests and close performance monitoring for further optimization of mixed
workloads scheduling.
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