

THttpServer class in ROOT

Joern Adamczewski-Musch
1
 and Sergey Linev

1

1
GSI, RB-EE, Darmstadt, Germany

E-mail: s.linev@gsi.de

Abstract. The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT

applications. It is based on Civetweb embeddable HTTP server and provides direct access to all

objects registered for the server. Objects data could be provided in different formats: binary,

XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented

with HTML/JavaScript based on JavaScript ROOT development. With any modern web

browser one could list, display, and monitor objects available on the server. THttpServer is

used in Go4 framework to provide HTTP interface to the online analysis.

1. Introduction

In many experiments online tools are required to control and monitor all stages of data taking and

online analysis. Usually many different software components are involved in such set up. Each of

them provides own tools and methods, which is often hard to integrate with each other.

Many online monitoring tasks can be solved with web technologies: one could use HTTP protocols for

data exchange; different methods for user authentication and access control; HTML and JavaScript for

interactive graphics in web browsers.

2. HTTP server for ROOT applications

An HTTP server running in the ROOT application provides direct access to its data objects without the

need of any intermediate files. Any ROOT object can be streamed no sooner than an HTTP request

arrives for it, and can then immediately be delivered to the browser. In the following sections the key

components of the newly developed web server in ROOT are treated in detail.

2.1. Sniffer of ROOT objects

Implementing a web server for ROOT objects requires an API with a unified interface to different

ROOT structures. This was realized as TRootSniffer class. It offers methods to browse and access

(‘sniff’) objects in folders, files, trees and different ROOT collections. Any object (or object element)

can be identified by a path string that can be used in an HTTP request to uniquely address the object.

By default TRootSniffer could access all objects reachable via gROOT pointer: opened files, trees,

canvases, and histograms. If necessary, a user could explicitly register any object in the folders

structure. TRootSniffer provides access not only to objects, but also to all class members by means of

ROOT dictionaries.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2.2. JSON representation of ROOT objects

In ROOT a binary “streamed” representation is used to store objects in files. One could try to decode

such information in web browsers with JavaScript, but this does not always work, especially in case of

custom streamers. The new TBufferJSON class solves this problem, performing all necessary I/O

operations directly on the application side. It converts ROOT objects into JSON (JavaScript Object

Notation) format, which can be parsed with standard JavaScript methods. An example of the JSON

representation for a TNamed object is shown in figure 1.

{
 "_typename" : "TNamed",
 "fUniqueID" : 0,
 "fBits" : 50331648,
 "fName" : "name",
 "fTitle" : "title"
}

Figure 1. JSON representation for TNamed object.

TBufferJSON class performs a special treatment for TArray and TCollection classes to provide a

representation that is closer to corresponding JavaScript classes without ROOT-specific overhead.

User classes with custom streamers can be equipped with special function calls, providing a

meaningful representation for objects data in JSON format.

TBufferJSON can stream not only whole objects, but also specified class members. This provides

access to any member of an object in a text human-readable form.

Introducing TBufferJSON class let perform ROOT-specific I/O code completely on the server side,

delivering to JavaScript-clients ready-to-use objects.

2.3. Civetweb-based server

Civetweb [1] embeddable web server was used to implement HTTP protocol in ROOT. Civetweb has

very compact and portable code and provides necessary functionality like multithreaded HTTP

requests processing, user authentication, secured HTTPS protocol support, and so on.

The THttpServer class in ROOT is a gateway between HTTP engine (implemented in TCivetweb

class) and the TRootSniffer functionality. THttpServer class takes care about threads safety: any access

to ROOT objects is performed from the main thread only, preventing conflicts with application code.

Access to the HTTP server can be restricted using digest access authentication method [2], supported

by most browsers.

2.4. FastCGI support

FastCGI [3] is a protocol for interfacing interactive programs with web servers like Apache, lighttpd,

Microsoft ISS and many others. Contrary to widely used CGI (Common Gateway Interface), FastCGI

provides a way to handle many HTTP requests in a persistently running application. From technical

point of view, FastCGI creates a TCP server socket used by the web server to deliver HTTP requests

and receive response from a local application.

The new TFastCgi class of ROOT implements FastCGI protocol as another HTTP engine for

THttpServer class. In fact, many HTTP engines can run with THttpServer simultaneously, allowing

access to the same data via different protocols. Usage of FastCGI protocol allows integration of

arbitrary ROOT application into an existing web infrastructure.

3. Accessing application data with HTTP protocol

With THttpServer one could use HTTP requests to directly access registered ROOT objects and their

data members from any kind of shell scripts. The URL syntax of HTTP requests is used to code

objects name and to provide additional arguments. For instance, TCanvas “c1” created in the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

2

application will get address http://hostname:port/Canvases/c1/ in the HTTP server. In the following

sections different supported requests are described.

3.1. root.bin request

This request returns binary data, produced with TBufferFile class:

http://hostname:port/Canvases/c1/root.bin

Such representation is used when objects are stored in the ROOT binary file.

To reconstruct a ROOT object from binary representation in a C++ program one should use a function

shown in figure 2:

TObject* Reconstruct(TClass* cl, void* webbuf, int webbufsize)
{
 TObject* obj = (TObject*) obj_cl->New();
 if (obj==0) return 0;
 TBufferFile buf(TBuffer::kRead, webbufsize, webbuf, kFALSE);
 buf.MapObject(obj, obj_cl);
 obj->Streamer(buf);
 return obj;
}

Figure 2. Function to reconstruct object from root.bin request. Here the buffer

webbuf contains the data retrieved by the HTTP request. The pointer on

reconstructed object is returned.

3.2. root.json request

This request returns an object representation in JSON format, produced by TBufferJSON class. To

request canvas “c1” from mentioned example, one should use following syntax:

http://hostname:port/Canvases/c1/root.json

Such request can be applied not only for the object itself, but also for object members. For instance,

one could request “fTitle” member of the canvas with request:

http://hostname:port/Canvases/c1/fTitle/root.json

For the root.json request one could provide a “compact” URL parameter, which defines different

level of compactness:

0 – no compression, nice human-readable format (default)

1 – leading spaces are removed

2 – spaces after commas and semicolons separators are removed

3 – no new lines add (maximal compression)

For example, minimal possible size of the object output will be achieved with request:

http://hostname:port/Canvases/c1/root.json?compact=3

The “compact” parameter does not affect the JSON format itself – the result of JavaScript-parsing

will be the same in all cases.

3.3. h.json request

The h.json request returns a hierarchical description of objects (and their properties), registered to the

server. It is used in the web interface to provide a tree-like display of available objects.

3.4. exe.json request

This request allows execution of object methods and returns result in JSON format. Like request:

http://hostname:port/Canvases/c1/exe.json?method=GetTitle

that will return the canvas title. To enable methods execution, one should disable the default read-only

mode of the server, calling THttpServer::SetReadOnly(kFALSE) method.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

3

3.5. root.png, root.jpeg and root.gif requests

These requests can be applied to all objects implementing a TObject::Draw() method (like histograms

or graphs). If requested, THttpServer will create a temporary canvas, draw the object on the canvas

and produce an image out of it. Following parameters can be applied for request:

h – image height (in pixels)

w – image width (in pixels)

opt – draw option

For instance, to produce an image with “lego” plot of two-dimensional histogram, one could apply

following request:

http:// hostname:port/Files/hsimple.root/hpx/root.png?w=700&h=500&opt=lego1

3.6. root.xml request

This request provides an XML representation of ROOT object, produced with TBufferXML class.

3.7. GZip compression of the requests
For each request GZip compression of returned data can be applied. This can be achieved by simple

adding of ‘.gz’ extension to the request like:

http://hostname:port/Canvases/c1/root.json.gz?compact=3

4. User interface

HTML and JavaScript are the natural choice of user-interface implementation for web servers.

4.1. JavaScript ROOT

JavaScript ROOT [4] implements ROOT-like graphics in web browsers. It is the base of graphical user

interface for the THttpServer. A screenshot of web browser with objects available from ROOT

tutorials/http/httpserver.C is shown on figure 3.

Figure 3. Browser with objects available from tutorials/http/httpserver.C macro.

The objects hierarchy is on the left side, and several displayed histograms are on

the right.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

4

4.2. Commands execution

By default THttpServer provides non-destructive methods for inspection and monitoring of objects

available at the server. This means that the user cannot change objects state or control execution of the

ROOT code. However a command interface allows execute methods of registered objects or just

perform TROOT::ProcessLine() on the server. ROOT application must register allowed commands to

the server, which then could be triggered by user from the browser. Figure 4 contains a screenshot of

the web browser with objects and commands available from ROOT tutorials/http/httpcontrol.C macro.

The example shows how content of histograms can be reset remotely (ResetHPX and ResetHPXPY

commands). Also two other commands (Start and Stop, shown only as buttons) provide control over

main loop execution.

Figure 4. Browser with objects available from tutorials/http/httpcontrol.C

macro. Registered commands (ResetHPX, ResetHPXPY) and also shortcut

buttons for them are displayed in left panel.

4.3. Remote TTree::Draw

JavaScript ROOT supports reading of different ROOT classes, but it was never aimed to implement

full ROOT functionality in JavaScript. Especially this is true for the TTree class, the most complex

component of the ROOT framework. THttpServer provides a possibility to use TTree::Draw()

functionality remotely from the web browsers. A special GUI element is provided which is activated

when a TTree element is clicked in the web browser as shown on figure 5. One could specify several

parameters (like draw expression or number of entries to process), used then with appropriate exe.json

request. The resulting histogram is drawn then with normal JSROOT methods.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

5

Figure 5. Example of TTree::Draw usage with tutorials/http/httpserver.C macro.

On top an input fields for function parameters, below the result histogram.

5. THttpServer in Go4 framework

Go4 [5] is GSI software framework, based on ROOT and Qt. It includes analysis framework closely

coupled with MBS [6] and DABC [7] data acquisition systems. Go4 provides powerful Qt-based GUI

to monitor and steer analysis execution.

5.1. Go4 analysis control via HTTP server

A special TGo4Sniffer class (subclass of TRootSniffer) has been implemented. It registers all objects

used in Go4 analysis to the THttpServer. These are histograms, conditions, parameters, input and

output events. TGo4Sniffer also offers several commands for control of the Go4 analysis via HTTP

protocol. For custom Go4 classes (like TGo4Condition or TGo4Parameter) JavaScript-based draw

functions are provided allowing viewing and modification of these objects in the web browsers. An

example of a web browser with several Go4 elements is shown in the figure 6.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

6

Figure 6. Browser with objects available from Go4ExampleSimple analysis.

TGo4Condition editor is shown in top left panel, graphical view of condition on

bottom left panel. Analysis log output is shown on the top right, event processing

rate on the bottom right. Go4 commands (start/stop/restart analysis, clear objects)

are provided as shortcut buttons on the of the objects browser. A status line at the

bottom displays current analysis event statistics.

5.2. Go4 GUI as browser for THttpServer

HTTP protocol makes it possible to access data from THttpServer by different applications – not only

with web browsers. Go4 GUI has been equipped with a component to read and draw objects from an

arbitrary THttpServer instance (shown on figure 7). To transport object data between server and the

Go4 GUI a binary representation is used (produced with root.bin request); decoding of objects data is

performed with conventional ROOT methods. For objects display regular ROOT graphics is used.

This is an advantage for complex applications where web browser graphics does not exist or does not

provide enough performance.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

7

Figure 7. Qt-based Go4 GUI with objects available from ROOT

tutorials/http/httpserver.C macro. Objects hierarchy is on the left side, several

displayed histograms on the right.

6. Conclusion

THttpServer class provides HTTP access to arbitrary ROOT-based application. JavaScript and HTML

code for browsing and display of different object kinds is implemented. With minimal efforts any

existing ROOT application can be equipped with an HTTP server and monitored from web browser.

The code is available in both master and 5-34-00-patches branches of ROOT [8] and provided with

latest ROOT releases.

7. References

[1] Civetweb homepage and repository, https://github.com/bel2125/civetweb

[2] RFC 2617, HTTP Authentication: Basic and Digest Access Authentication,

http://tools.ietf.org/html/rfc2617

[3] FastCGI homepage, http://fastcgi.com

[4] JavaScript ROOT homepage, https://root.cern.ch/js/

[5] Go4 homepage, http://go4.gsi.de

[6] MBS homepage, http://daq.gsi.de

[7] DABC homepage, http://dabc.gsi.de

[8] ROOT git repository, https://root.cern.ch/gitweb?p=root.git

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062032 doi:10.1088/1742-6596/664/6/062032

8

