
Scalable and fail-safe deployment of the ATLAS
Distributed Data Management system Rucio

M Lassnig1, R Vigne2, T Beermann1, M Barisits1, V Garonne3, C
Serfon1, for the ATLAS Collaboration
1 ATLAS Data Processing, Physics Department, CERN, 1211 Genève 23, Switzerland
2 Institute for Astro- & Particle Physics, University of Innsbruck, 6020 Innsbruck, Austria
3 Department of Physics, University of Oslo, 0316 Oslo, Norway

E-mail: Mario.Lassnig@cern.ch, Ralph.Vigne@cern.ch, Thomas.Beermann@cern.ch

Abstract. This contribution details the deployment of Rucio, the ATLAS Distributed Data
Management system. The main complication is that Rucio interacts with a wide variety of
external services, and connects globally distributed data centres under different technological
and administrative control, at an unprecedented data volume. It is therefore not possible to
create a duplicate instance of Rucio for testing or integration. Every software upgrade or
configuration change is thus potentially disruptive and requires fail-safe software and automatic
error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime
monitoring. This strategy mainly employs independent stateless services, automatic failover,
and service migration. The technologies used for deployment and mitigation include OpenStack,
Puppet, Graphite, HAProxy and Apache. In this contribution, the interplay between these
components, their deployment, software mitigation, and the monitoring strategy are discussed.

1. Introduction
The high-energy physics experiment ATLAS creates non-trivial amounts of data [1]. The
data management system Rucio [2] catalogues this data and makes it easily accessible for the
experiment. The data itself is stored on the Worldwide LHC Computing Grid [3]. Rucio also
manages the entire lifecycle of experiment data, from raw detector data up to derived physics
data products from user analysis. The governing technical policies are defined by the ATLAS
Computing Model [4], and motivate the use of parallel and distributed mechanism to ensure
performance and safety of the data.

Rucio is one of the underpinnings of the distributed computing stack of ATLAS. Many
components interact with Rucio, most importantly the the workload management system PanDA
[5], therefore an uninterrupted service is required. If Rucio fails to operate properly, jobs assigned
for execution in PanDA will fail, because the jobs cannot find and act on their data anymore.
It is therefore of utmost importance that Rucio performs efficiently and fault-tolerant. The
two main objectives are thus to make Rucio scalable to the workload of ATLAS distributed
computing, and fail-safe with a minimum amount of human intervention.

This paper is structured as follows. First, the infrastructure for the deployment of Rucio is
described. This includes both the node and configuration management. Second, the software
architecture is described, which enables automated horizontal scalability, makes the service
itself fault-tolerant, and allows easy monitoring of system runtime characteristics for anomaly

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Figure 1. OpenStack [6] is the foundation of the CERN IT data centre.

mitigation. The paper concludes with a discussion on the design choices, and their perceived
benefits in the first months of Rucio in production.

2. Infrastructure
The infrastructure is built upon two parts, the node management system OpenStack [6], and
the configuration system Puppet [7]. Both services are hosted by the CERN IT data centre [8].

2.1. Node management
OpenStack is a cloud operating system that controls large pools of compute, storage, and
networking resources throughout a data centre, all managed through a dashboard that gives
administrators control while allowing users to provision resources through a web interface
[6]. Figure 1 shows the basic architecture of OpenStack. Compute uses one of multiple
supported hypervisors in a virtualized environment. The CERN IT data centre uses the Linux
internal KVM. Storage provides a fully distributed, API-accessible storage platform that can be
integrated directly into applications or used for backup, archiving and data retention. Block
Storage allows block devices to be exposed and connected to compute instances for expanded
storage, better performance and integration with enterprise storage platforms. Networking is a
pluggable, scalable and API-driven system for managing networks and IP addresses. Detailed
information about OpenStack can be found in their documentation [9].

2.2. Configuration management
OpenStack by itself is not useful for systems like Rucio. The nodes need to be configured
appropriately, such that Rucio services can run. This is done via a configuration mechanism
that is layered atop OpenStack. The two systems Puppet [7] and TheForeman [10] are used to
accomplish this. The CERN IT data centre provides setups of OpenStack together with Puppet
and TheForeman.

Puppet usually uses an agent/master (client/server) architecture for configuring systems,
using the Puppet agent and Puppet master applications. Puppet configures systems in two main
stages: (1) compile a catalogue, (2) apply the catalogue on the node. The task of the Rucio
administrators is to write the manifests that comprise the catalogue, such that the manifests can
be found, compiled into a catalogue, and eventually applied. This process is automated by the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

2

c l a s s h g v o a t l a s r u c i o : : r u c i o : : au then t i c a t i on {
c l a s s { ’ h g v o a t l a s r u c i o : : common : : s e l i nux ’ : }
c l a s s { ’ h g v o a t l a s r u c i o : : common : : i p t a b l e s ’ : }
c l a s s { ’ h g v o a t l a s r u c i o : : common : : httpd ’ : }
c l a s s { ’ h g v o a t l a s r u c i o : : common : : ruc io ’ : }
c l a s s { ’ hg hadoop : : d e f a u l t : : base ’ : }

f i l e {
’/ e t c / httpd / conf . d/ ru c i o . conf ’ :

path => ’/ e t c / httpd / conf . d/ ru c i o . conf ’ ,
content => template (’ h g v o a t l a s r u c i o / ru c i o /auth . conf . erb ’) ,
n o t i f y => S e r v i c e [’ httpd ’ , ’ memcached ’] ;

}
}

Listing 1. Example puppet manifest for Rucio authentication nodes

CERN IT data centre. The manifests themselves are a declarative description of the software
needed in a given configuration, and follows a Ruby-like syntax.

Listing 1 gives an example how the manifest entry for Rucio authentication looks like.
First, manifests are hierarchically structured into hostgroups, denoted by double colons. In
this case, the hierarchy is shown with the top-level hostgroup hg voatlasrucio, and then
rucio/authentication. The first four clauses include other classes from the top-level hostgroup,
however, from a different branch in the tree, called common. Accordingly, this is the basic
node setup with SELinux, a firewall, a web-server, and the Rucio software itself. Additionally,
a fifth include imports from another top-level hostgroup that was not written by the Rucio
administration team. The Hadoop top-level hostgroup is provided by CERN IT, but can be
included, as hostgroups are all globally available. The file clause describes that the given
file /etc/httpd/conf.d/rucio.conf, that is, the web-service configuration, is to be loaded from
a standard Ruby ERB template that is stored in Puppet. To ensure that other services pick up
changes to this configuration file, whenever this file is changed, a notification is registered and
both the web-server and the memory-cache are restarted.

Using this declarative description of nodes is straightforward and brings many benefits, most
importantly short and concise configurations. There is, however, one caveat, as catalogues
are not processed linearly; this means that in-order execution is not guaranteed. This is
especially troublesome when software is to be installed that requires certain preconditions. If
such preconditions are not represented in the Puppet Standard Library then custom scripts have
to be written to ensure proper ordering. For example, directories might be missing which can
cause installation of software to fail.

Finally, the configuration also has to take care of secrets, for example, database passwords. As
the Puppet catalogues are publicly readable, an administrator cannot simply put the passwords
in them. This part is handed off to a separate service Teigi. Manifests just need to reference
a key, which is automatically expanded by Teigi during compilation of the catalogue with the
actual secret value. The secret value can be set via a separate commandline tool, separate from
the rest of the configuration; this gives another layer of security.

3. Software
Distinct from infrastructure management, Rucio was designed to mitigate potential problems in
software early. It is horizontally scalable, fault-tolerant, and allows direct component monitoring.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

3

3.1. Horizontal scalability
In order to meet reliability and scalability requirements, two quad-core nodes, each running
HAProxy [11] with four concurrent processes are used as load balancers. The nodes accept
HTTPS requests from everywhere, while HTTP requests are only accepted from specific services
inside CERN. In case of HTTPS requests, HAProxy is also in charge of SSL termination.
Measurements have shown that early SSL termination reduces roughly 25% of CPU load on
the backend nodes.

To provide stable service levels, and optimise the setup of the nodes for specific purposes,
HAProxy defines five different backends with distinct sets of nodes. A set of access control lists
(ACLs) defines which backend will receive a request. For example, requests for resources related
to traces, that is, URIs which start with /traces/. . .) will go to a set of nodes optimised for
this specific type of requests. Another distinction is made depending on the HTTP method.
HTTP GET requests will go to a set of nodes optimised for reading data from the database,
while HTTP POST requests will go to nodes optimised for writing into the database. Last, the
account issuing the request is considered. In order to guarantee stable conditions for production
and analysis systems, dedicated sets of nodes are provided. Inside each backend, HAProxy
balances the load using the least connection approach. Eventually, two HTTP header fields are
added, that is, one including the original source IP named X-Forwarded-For, and one indicating
which of the host load balancer hosts forwarded the request, named X-Requested-Host.

In addition to serving user requests, Rucio also has services which run continuously. This
includes services like the conveyor, which is responsible for scheduling and managing file transfers
on the WLCG, or the reaper, which is responsible for file deletion. These services are horizontally
scalable as well. Adding a new conveyor or reaper node via OpenStack/Puppet will scale-out
the service as required. This is enabled through two mechanisms that complement each other,
heartbeats and avoidance. Every service periodically sends a heartbeat to the central database,
specifying a tuple (executable, hostname, pid, thread id, thread name, last modified). This gives
an instant view on the currently running services. Potentially stuck services can be spotted easily
by older last modified timestamps. The return value of the heartbeat is the aggregate number of
threads for a given (executable, hostname, pid, thread id, thread name), and the assignment of
an integer id. This integer-id is then used by the avoidance algorithm in each service to ensure
that no other threads work on the same entries in the queue. For example, this avoids that two
conveyors try to transfer the same file each. Through dynamic allocation of these integer ids,
it is possible that new services can be brought up and all existing services will automatically
adapt their share of the work.

3.2. Fault-tolerance
Each HAProxy process executes periodic health checks for each backend host by issuing a Rucio
ping request. This verifies that the nodes are still alive, and Rucio was started inside Apache
and can respond appropriately. If a node fails to respond, it will be excluded from the load
balancing and reported as being ’DOWN’. HAProxy will continue checking the node and include
it in the load balancing as soon as it successfully responds to a Rucio ping request.

The fault-tolerance of Apache containers for the Rucio backend are straightforward. Their
configuration forces a container restart after a given number of failed requests. Though a
somewhat drastic approach, this has effectively prevented known memory leaks from Apache
itself.

The fault-tolerance of Rucio code is built atop the statelessness of requests and a stringent
database layer, using SQLAlchemy [12]. Due to statelessness, a single hanging request cannot
block others. In case of a code crash, the database connections within an Apache container must
be reestablished, to continue serving new requests while ensuring transactional safety. This is
ensured through Python annotations on all requests. A negligible amount of CPU is thus used

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

4

on every request to check for availability of connections in the connection pool, and missing
connections are reestablished. The major complication in these annotations is the inconsistent
error handling across multiple database backends, which had to be implemented specifically for
SQLite, MySQL, PostgreSQL, and Oracle.

3.3. System measurements
Performance metrics, coming from several services and hosts, are reported against Graphite
[13] with a receiving StatsD server [14] in front. Combining Graphite and StatsD allows high
frequency real-time data taking of numeric time series. StatsD is a light-weight UDP server,
aggregating received data into distinct metrics and calculating basic statistics like lower, upper,
mean, or rate automatically. Eventually the data is periodically flushed to Graphite, which
makes them persistent in RRD databases files [15] for later analysis.

In Rucio, as well as in StatsD, three types of metrics are supported:

(i) Counters are used to count sums per time period. Whenever a new value is reported to a
metric of type counter, it is added to its current value and assigned to the sum appendix of
the metric. StatsD also maintains a further appendix named rate which provides the sum
in the form of events per seconds. For example, if the flush interval is 60 seconds, and the
sum of counters adds up to 90, the rate is 1.5, independent of how many separate reports
were sent.

(ii) Gauge values are used for metrics taken less often than the defined flush interval. For
counters, if a metric was not reported since the last flush, it would be reported with null
at the next flush. This can be rather inconvenient when analysing or plotting data, as null
values interfere with derivation calculations, or just ruin the plot by making it extremely
spikey. To avoid these situations, StatsD will continue reporting the last known value of
a gauge metric until it receives a new one. This allows more flexibility in terms of flush
intervals and metric reporting.

(iii) Timers are used to monitor how long it took to execute a certain operation. StatsD
aggregates the reported execution times as an average to the metric, and preserves the
highest (upper) and lowest (lower). It also keeps track of how many reports where received
in the flush interval (count) and how many Hz (count ps) this represents. Having all this
information allows to derive fine grained understanding about how expensive pieces of code
are. It is a valuable source of information when identifying performance bottlenecks and to
keep track of potential performance improvements.

In Rucio four methods are provided to report these metrics. Examples of how this methods
can be used are shown in Listing 2.

Three of them are implemented as a single statement i.e. record counter (line 2), record gauge
(line 5), and record timer (line 8). Each of these methods accepts the name of the metric and
the value to be reported. The fourth method, record timer block (line 11) is implemented as
a block statement, which times the execution of the provided code block automatically and
reports it when execution has finished. As Rucio has a considerable number of bulk methods,
these statements further support provision of numbers (e.g. the number of files included in the
bulk submit) which are used to normalise the reported execution time (line 13).

Graphite not only has the ability to store the data in RRD files, it also comes with a web
front end to plot them. This PHP-based web application allows combination and transformation
of stored data in several ways. A complete list of supported methods is provided in [13]. Using
the Graphite Web Composer, one can transform and combine several metrics into one plot to
give a comprehensive view on the intended service or operation. For example, Figure 2 shows
the number of concurrent sessions per backend reported by HAProxy.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

5

Figure 2. Graphite Composer: Number of concurrent sessions per backend

Increase t e s t . counter by ten
monitor . r e co rd counte r (’ t e s t . counter ’ , 10)

Set t e s t . gauge to new v a l u e ten
monitor . r ecord gauge (’ t e s t . gauge ’ , 10)

Report t e s t . runtime with 500 m i l l i s e c o n d s
monitor . r e co rd t imer (’ t e s t . runtime ’ , 500)

Time e x e c u t i o n o f code b l o c k
monitor . r e c o r d t i m e r b l o c k ([’ t e s t . t imer ’ , (’ t e s t . t imer normal10 ’ , 1 0)]) :

Listing 2. Examples of Rucio monitoring methods

Usually, information like this can only be interpreted properly if shown in combination with
other information. For example, if the number of concurrent sessions is reasonable or not can
only be judged if compared with the requests rate at the time and/or the average response
time. To support users to get a comprehensive view of such correlating data, Graphite supports
the creation of dashboards. Dashboards are an ordered set of plots showing the same period of
time. Figure 3 shows an example for a dashboard providing a comprehensive view about the
current requests. It shows the request rate together with the load per backend, and also includes
information of each node within a backend. It can only be judged if everything is in order when

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

6

Figure 3. Graphite Dashboard: Overview of the evolution of request distribution by HAProxy

u r l = ’ http ://% s / render ? format=json&from=−%smin&t a r g e t=%s ’ %
(GRAPHITE URL, int (opt ions . per iod)+1 , opt ions . t a r g e t)

r = r e q u e s t s . get (u r l) . j s on ()

e x i t c o d e = OK
for t a r g e t in r :

for db in t a r g e t [’ datapo int s ’] :
i f not db [0] :

counter +=1
i f (counter > opt ions . warning) :

e x i t c o d e = WARNING
i f (counter > opt ions . c r t i t i c a l) :

e x i t c o d e = CRITICAL
sys . e x i t (e x i t c o d e)

Listing 3. Simplified example of a Nagios probe using Graphite data

one has all this information at hand.
With all this fine grained information in a single place, it stands to reason to use it to have

an automated observation of this data and triggering alarms if something is off. To do so, the
URL API of Graphite is used to request the data in JSON format. It should be noted that
all the possibilities of combining and transforming are also available here. Together with data
filtering, which is also supported by Graphite, this is a very powerful foundation for complex
tests. In Listing 3 we provide an example of how a Nagios [16] probe, utilising this data, can be
implemented.

In this implementation, it can be defined how often values are allowed to fall below or above a
certain threshold, by counting the null values returned by Graphite. Depending on this number,
either OK, a warning, or a critical error is reported. In Listing 4 an example how this probe is
used to check the availability of the load balancer is shown.

The target represents the HAProxy nodes, and reports the idle percentage of the last 30
minutes. All values above 25% are filtered. If the number of data points exceeds either 20 or
25, Warning or Critical is reported accordingly. Already in this simplified example, it can be

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

7

g raph i t e2nag i o s
−−t a r g e t

aliasByNode (
removeAboveValue (

s t a t s . ru c i o . monitor ing . l oadba lance r . ∗ . ∗ . I d l e p c t , 2 5) , 4)
−−c r i t i c a l 25
−−warning 20
−−from 30

Listing 4. How to call the Graphite Nagios probe

seen which levels of complexity can be implemented into probes with a few lines of code.

4. Summary
The OpenStack virtualised infrastructure, provided by the CERN IT data centre, has proven
to be stable and reliable. In cooperation with the Puppet configuration management system, a
comprehensive suite for installation, configuration, and maintenance is available. Rucio leverages
all features for load-balancing and fault-tolerance provided by OpenStack and Puppet, and
implements custom handling on the application side as well. In total, this gives three parachutes
for Rucio, which also serve as scalability features: the automatic redistribution of requests in case
of Rucio node failure, the automatic reconfiguration in case of external system failure, and the
automatic restart of services in case of any unexpected problems. This is coupled with a tightly
integrated monitoring system, that allows quasi real-time monitoring of system performance
characteristics, and direct notification of persons on-call in case of alarms. Especially the real-
time monitoring has proven to be a useful tool for ATLAS data management operations, because
it allows cascading events from external systems to be followed.

The most important future work will include the networking component of OpenStack. This is
not yet used by CERN IT, but will enable the provisioning of dedicated network links, which can
help improve latency for catalogue search and data transfer. This activity will complement the
idea of virtual circuits, that is, software-defined networks, that is proposed within the WLCG.

References
[1] The ATLAS Collaboration 2008 JINST 3 S08003
[2] V Garonne et al on behalf of the ATLAS Collaboration 2014 J. Phys.: Conf. Ser. 513 042021
[3] I Bird 2011 Annual Review of Nuclear and Particle Science 61 99-118
[4] R W L Jones and D Barberis 2010 J. Phys.: Conf. Ser. 219 072037
[5] T Maeno et al on behalf of the ATLAS Collaboration 2014 J. Phys.: Conf. Ser. 513 032062
[6] OpenStack – Open Source Cloud Computing Software URL https://www.openstack.org/
[7] Puppet – IT Automation for System Administrators URL https://puppetlabs.com/
[8] Ramon Medrano Llamas et al 2014 J. Phys.: Conf. Ser. 513 032066
[9] OpenStack Documentation URL http://docs.openstack.org/

[10] Foreman – Lifecycle management for physical and virtual servers, url = http://theforeman.org/
[11] HAProxy – The Reliable, High Performance TCP/HTTP Load Balancer URL http://www.haproxy.org/
[12] SQLAlchemy – The Python SQL Toolkit and Object Relational Mapper URL http://www.sqlalchemy.org/
[13] Graphite – Scalable Realtime Graphing URL http://graphite.wikidot.com/start
[14] StatsD – Measure Anything, Measure Everything URL https://github.com/etsy/statsd/wiki
[15] RRD – Round Robin Database URL http://oss.oetiker.ch/rrdtool/
[16] Nagios – The Industry Standard in IT Infrastructure Monitoring URL http://www.nagios.org/

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062027 doi:10.1088/1742-6596/664/6/062027

8

