
Resource control in ATLAS distributed data

management: Rucio Accounting and Quotas

M Barisits1,2, C Serfon1, V Garonne3, M Lassnig1, T Beermann1, R
Vigne1 on behalf of the ATLAS Collaboration
1 CERN, Geneva, Switzerland
2 Vienna University of Technology, Vienna, Austria
3 University of Oslo, Oslo, Norway

E-mail: martin.barisits@cern.ch

Abstract. The ATLAS Distributed Data Management system manages more than 160PB
of physics data across more than 130 sites globally. Rucio, the next generation Distributed
Data Management system of the ATLAS experiment, replaced DQ2 in December 2014 and will
manage the experiment’s data throughout Run 2 of the LHC and beyond. The previous data
management system pursued a rather simplistic approach for resource management, but with the
increased data volume and more dynamic handling of data workflows required by the experiment,
a more elaborate approach is needed. Rucio was delivered with an initial quota system, but
during the first months of operation it turned out to not fully satisfy the collaboration’s resource
management needs. We consequently introduce a new concept of declaring quota policies
(limits) for accounts in Rucio. This new quota concept is based on accounts and RSE (Rucio
storage element) expressions, which allows the definition of hierarchical quotas in a dynamic way.
This concept enables the operators of the data management system to implement very specific
policies for users, physics groups and production systems while, at the same time, lowering the
operational burden. This contribution describes the concept, architecture and workflow of the
system and includes an evaluation measuring the performance of the system.

1. Introduction
Rucio, the ATLAS [1] collaboration’s distributed data management system manages about 160
petabytes of data on more than 750 storage endpoints in the Worldwide LHC Computing Grid[2].
Rucio replaced DQ2[3] in December 2014 and introduced many new features to the ATLAS users
and applications. Rucio organises not only the RAW data from the detector, but also handles
all data inputs and outputs from the collaborations users.

One important feature of Rucio is the control of storage resources to assure a fair usage of
resources based on the collaboration’s usage policy. These policies are expressed as quotas in
the system.

In this article we describe how data was accounted and quota was managed in DQ2, how a
first quota version was implemented in Rucio and then we introduce a new quota system for
Rucio which will handle quotas throughout Run 2 of the LHC and beyond.

The paper is organised as follows: In section 2 we present key concepts of Rucio which are
essential to follow this article. In section 3 we discuss quotas in general and give an evolution
of storage quota systems in ATLAS distributed data management. We also point out how the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



new quota system fits in here. In section 4 we explain the concept of this system, followed by
section 5 where we describe the architecture and workflow. We continue in section 6 with an
evaluation. Finally we conclude in section 7.

2. Rucio key concepts and architecture
2.1. Concepts
This section describes the key concepts of Rucio[4, 5] which are essential to follow this article.

In Rucio, every user, group or organised production activity is represented by an account.
Accounts are also the unit of assigning permissions. Every account has a data namespace
identifier called scope. The scope is used to partition the data namespace, to easily separate
production data from individual user data. In general, accounts can only write to their own
scope, but privileged accounts (like production accounts) can be authorized to write into foreign
scopes. Credentials, such as username/password, X509 certificates or Kerberos tokens are used
to authenticate with Rucio. Such credentials can map to multiple accounts, for example, when
a user is authorized to do operations on behalf of a group account.

Managing data is the primary function of any data management system. The ATLAS
Collaboration creates and administers large amounts of data which are physically stored in
files. For Rucio, these files are the smallest operational unit of data. Files, however, can be
grouped into datasets and moreover, datasets can be grouped into containers. We consequently
refer to files, datasets or containers as data identifiers (DID), as all three of them refer to some
set of data. A data identifier is a tuple consisting of a scope and a name. In Rucio each
(scope, name) tuple is unique. Datasets as well as containers may be overlapping in the sense
that their constituents may be part of other datasets or containers.

To address and utilize storage systems in Rucio, the logical concept of the Rucio Storage
Element (RSE) is used. An RSE is a container of physical files (replicas) and is the unit of
storage space within Rucio. Each RSE has a unique name and a set of attributes describing
properties such as protocols, hostnames, ports, quality of service, storage type, used and available
space, etc. Additionally, RSEs can be assigned with meta-attributes to group them in many
logical ways, e.g. all Tier-2 RSEs in the UK, all Tier-1 RSEs, etc.

To select a set of RSEs, RSE Expressions were introduced. RSE Expressions are strings based
on the RSE Expression language defined in [4]. The expressions are interpreted by Rucio and
result in a set of RSEs. For example, to specify an expression considering all German and French
Tier-2 sites, the suitable expression rule would be ”tier=2&(country=FR|country=DE)”, which
is equivalent to the set of all Tier-2s intersected with the set of all French and German RSEs.

Replica management in Rucio is based on replication rules. The general idea of replication
rules is that instead of defining a specific destination for data to be replicated to, the user
expresses the intention behind the replication request. Consequently, the system is able
to interpret those requests and choose the appropriate destinations while preserving system
resources, like storage space and network bandwidth. Replication rules can explicitly address
a specific RSE, or be more generic such that they result in a list of RSEs, e.g. a user wants
to replicate a dataset to two Tier-2 RSEs in the United Kingdom. The user can create a
replication rule with 2 copies and the RSE expression ’tier=2&country=uk’. The string
’tier=2’ represents the set of all Tier-2 RSEs and the string ’country=uk’ the set of all
RSEs in the United Kingdom. The set-union operator ’&’ is used to create the set-union of
both sets. Thereupon Rucio picks two ideal destinations based on existing and queued replicas.

A replication rule can be created for any data identifier in Rucio, independently of the scope
or creator of the data identifier. When specified on a dataset or container, the rule will affect
all contained datasets or containers. Subsequent changes to these datasets or containers will be
considered by the replication rule.

Internally, Rucio processes replication rules and creates a replica lock for each replica created

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

2



or covered by the rule. Replicas with at least one replica lock are exempt from the deletion
procedure. Quota calculations are based on replica locks and not actually created replicas.
Therefore quotas are not based on the amount of physically created replicas. For example, a
single replica can have multiple replica locks from different rules and all accounts will pay from
their quota for the file, not only the account which was responsible for creating the replica in the
first place. In the end, accounts are paying quota for the protection from deletion of a replica
and not for the replica’s creation.

Once a replication rule is removed, the associated replica locks are removed as well. Replicas
without any replica lock are flagged to be picked up by the deletion service.

2.2. Architecture
The Rucio software stack is separated into three horizontal layers and one orthogonal vertical
layer. It is implemented in Python 2.6[6].

The Rucio clients layer offers a command line client for users as well as application
programming interfaces which can be directly integrated into user programs. All Rucio
interactions are transformed by the client into https requests which are sent to the REST[7]
interface of the Rucio server. Consequently, external programs can also choose to directly
interact with the REST API of the server (e.g. by libcurl).

The Rucio server layer connects several Rucio core components together and offers a
common, https based, REST API for external interaction. After a request is received by
the REST layer, the authorization component checks the used credentials. If permitted,
the permissions of the account to execute the given request are checked by the permission
component. If allowed, the request is passed to the responsible core component for execution.
Rucio core components are allowed to communicate with each other, as well as with the Rucio
storage element abstraction.

The Rucio Storage Element (RSE) abstraction layer is responsible for all interactions
with different Grid middleware tools which interact with the Grid storage systems. It effectively
hides the complexity of these tools and combines them into one interface used by Rucio. The
abstraction layer is used by the clients, the server as well as the Rucio daemons.

The Rucio daemons are used to asynchronously operate on requests made by users or by
the Rucio core. These can be transfer requests, executed by the Conveyor, expired replicas or
datasets deleted by the Reaper or Undertaker as well as rule-re-evaluations and subscriptions
performed by the Judge and Transmogrifier.

The Database is used to persist all the logical data as well as for transactional support.
Only the Rucio server or daemons directly communicate with the database. Rucio uses
SQLAlchemy[8] as an object relational mapper for performance as well as for development
reasons.

3. Quotas and their evolution in ATLAS distributed data management
The main principle behind quotas is to partition storage resources for different users. Not only
does production data need to have a guaranteed available partition separated from user data,
but more importantly also user data needs to be partitioned somehow fairly to protect the
storage from overload by a single user. The term quota is a long established term in storage
administration and can be mainly differentiated in block (or usage) quota, which is based on
volume (bytes) and inode (or file) quota, which is based on the number of files. Furthermore
quotas can be categorized in hard and soft quotas, which allows users to temporarily violate
their quota cap.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

3



3.1. Quotas in DQ2
In DQ2 quota was based on replica accounting reports, which were generated once a day. After
the report was generated, a script ran over the report comparing the actual usage against a list
of quota caps. For violating quotas email alerts were generated to inform the system operators
about the violations.

The advantage of this system was its very low complexity. As the accounting reports had
to be generated, for other purposes, anyway, the actual comparison tool was very simple. The
disadvantage of the system was that it was, de-facto, no real quota system. As the quota could
be exceeded beyond any limit, this concept was not even a soft-quota. Also, once the quota
was exceeded, clean-up usually required a non-negligible amount of work, as users had to be
contacted on a case-by-case basis.

3.2. First quota version in Rucio
With the initial release of Rucio we also delivered a fully functional quota system. Each quota
is defined as (account,RSE, bytes) tuple, which defines a hard quota for an account on a RSE.
If no quota is set, the account has no permission to acquire replica locks or transfer files to this
RSE, thus the default quota is defined as bytes = 0. Consequently to give accounts unlimited
access to an RSE the bytes value can be set to bytes =∞.

The fundamental part of this implementation is a consistent, realtime accounting of the
current amount of locked replicas which each account has on each RSE. In DQ2 the replica
volume was calculated only once a day as part of the accounting report, but this was
clearly not sufficient to support a system with hard quotas. Rucio uses a counter-based
system to keep track of the number of files and bytes each account locks on an RSE. These
(account,RSE,#files,#bytes) tuples are stored in an index organized table in the database
to allow fast lookup and updates. Due to potential row lock contention on the database when
updating the table from many different processes (daemons and server), there is only one master
process which updates this table. This process, residing in the daemon layer of Rucio, reads
from a queue table and updates the counters in one transaction. Whenever a rule is created
or removed the respective differences are put into this queue table. Thus the counters are only
eventual consistent, but the master process is quick enough to ensure that the delay between
queue and master table is only several seconds.

The advantage of this system is that both management of quota as well as lookups are very
simple. Whenever a new rule is created, the workflow only has to make one primary key based
lookup in the quota table and one primary key-based lookup in the counter table, to see if an
account is within its quota. This is very performant and we have demonstrated that this system
runs very well.

The disadvantage of this system is, that it does not conceptually represent what the
collaborations policies on disk quotas actually are. For example, this concept allows a quota
for an account for each scratchdisk RSE. However, what is really needed, policy wise, is one
quota for the account spanning over all scratchdisk RSEs. This kind of quota definition is
fundamentally different.

While it would be possible to dynamically adapt single RSE quotas to achieve this kind of
behavior, we decided against that, as it would again be a quota system outside of the Rucio core
which would lead again to different consistency issues, as with DQ2. Instead the decision was
made to design and implement a new quota system within Rucio.

4. Quota concept
The main goal the new quota system has to achieve is to support quotas involving multiple
RSEs. A potential conflict arises if two or more quotas involve the same RSE. It can be very
simply argued that in these cases, the lowest or highest quota should count, but in any case the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

4



question arises what has to be done to represent exceptions. These were the main difficulties
which had to be solved conceptually, before solving the architectural challenges.

With the new quota system we also decided to introduce the possibility to have quotas on the
number of files. This is due to the reason that some storage systems do not scale well with high
numbers of small files. To discourage users from creating many small files, but instead group
them into tarballs or other archives, the concept of file (or inode) quota is introduced.

With the new quota system each quota is defined as (account,RSEexp,#bytes,#files, level)
tuple.

• The account field is the account this quota is valid for.

• The RSEexp field holds an RSE expression describing the set of RSEs the quota is valid
for.

• The #bytes field is the maximum number of bytes the account can write to this set of
RSEs. The value can be ∞.

• The #files field is the maximum number of files the account can write to this set of RSEs.
The value can be ∞.

• The level field is an integer value setting the level of this quota. The level is used to create
a hierarchy between quotas which is necessary to resolve exceptions and will be described
next in this section.

When it comes to overlapping quotas the following policy is used to resolve conflicts during
the quota evaluation process:

(i) Quotas with higher level supersede quotas with lower level.

(ii) Quotas with the same level: It is sufficient that one quota is violated.

This conflict resolution gives the policy creator maximum freedom to declare quotas and still
be able to define exceptions. A typical policy, including an exception could look like this:

• All accounts have a global quota of 20TB on all scratchdisk RSEs. The respective quota
looks like this: (account = ”jdoe”, RSEexp = ”scratchdisk=1”, bytes = 20TB, files =
∞, level = 0)

• However, no user should have more than 2TB on a single scratchdisk:
(”jdoe”, ”CERN SCRATCHDISK”, 2TB,∞, 0)

• But user jdoe is a power-user on BNL-OSG2 SCRATCHDISK, where he should have infinite
quota:
(”jdoe”, ”BNL-OSG2 SCRATCHDISK”,∞,∞, 1)

5. Architecture
The quota components are integrated into both server as well as daemon workflows in the
architecture, as replication rules are created both from servers and daemons. Also the client
and REST layers have to be adapted to allow system operators the manipulation of quotas.

The architecture of the new quota system in Rucio has to solve one major challenge: with
every rule creation some RSEx is picked to write replicas to. As RSE expressions are used
to describe the quotas, the system has to be able to efficiently identify which quotas apply to
RSEx. As an account can have multiple quotas the realtime evaluation of all RSE expressions
would be rather slow. As the result of RSE expressions only changes very rarely, we decided
in favor of a caching strategy. Thus, each RSE expression is only resolved once every day. To
speed up the process of the quota evaluation, a daemon populates the cache once a day, so in
normal operation the standard quota evaluation workflow does not have to contact the database
to resolve RSE expressions.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

5



To identify if a single quota is violated multiple RSE counters have to be aggregated. However,
as these counter lookups are very fast primary key lookups, the performance of this workflow
does not change significantly.

The next paragraph describes each step in the workflow of the quota evaluation, which is
shown in figure 1:

(i) The first step is actually part of the rule creation workflow, thus it would have to be executed
even without a quota system. It resolves the RSEexp of the replication rule, to get a list
of eligible RSEs: (RSE1, RSE2, . . . , RSEn) ∈ RSEN . If the rule is created by a privileged
account, the whole quota evaluation is skipped and the workflow continues directly with
the rule creation.

(ii) In the next step the usage counters for all eligible RSEN are retrieved. As these are
primary-key based lookups against an index organized table in the database, the lookups
are very fast.

(iii) Afterwards all quotas (quota1, quota2, . . . , quotan) ∈ quotaN of the account are retrieved
from the database. As the quota table is also index organized by account, this lookup is
also very fast. However, at this point no selection of applicable quotas in quotaN has been
made.

(iv) In the next step, the RSE expression of each quota in quotaN is resolved from the cache. If
the resolved RSE set overlaps with RSEN the quota is applicable and has to be evaluated
in the next step, if not, the quota is not applicable. This operation is also very fast as only
fast cache lookups are involved.

(v) In the next step for each applicable quota the usage counter comparison is made. For each
RSE out of the set RSEN a decision is made if there is enough quota or not. This operation
is very fast as no database interaction is involved. The process is purely CPU bound.

(vi) In the last step a set of RSEs with sufficient quota is reported back to the rule creation
workflow. The set might be empty leading to a rejection of the replication rule.

Resolve the 
RSEexpression 

of the rule

Get current 
usage values 
for the RSEs

Get quotas of 
the account 
from the DB

Get the RSEs 
of the quotas 

from the cache

Calculate 
quotas

Create 
replication rule

Daemon: 
Populate cache

privileged accounts

DB Cache

Figure 1. Quota evaluation workflow.

6. Evaluation
The evaluation of the new quota system is quite difficult as the current quota system in Rucio
is fundamentally different to the new one. Also, as the new system is not in production yet, we

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

6



do not have a set of production-level quotas. Our approach to evaluate the system is as follows:
Over a period of 24 hours we recorded all rule creations for scratchdisks on the production
system of Rucio. For the new quota system, we created, for each account, a quota spanning
over all scratchdisks and a quota for each single scratchdisk. For some selected accounts we also
defined exceptional quotas (on a higher quota level).

We then replay all the rule creations on a test instance with the new quota system. For
comparison, we recorded timings of the whole quota workflow (See figure 1) for the current and
the new quota system. The timings are shown in figure 2.

In this evaluation the new quota system is about 25% slower than the current quota system,
which is well explained by the higher complexity and added functionality. However, as the whole
rule creation workflow takes 150ms, on average, an increase of 6ms is negligible.

Figure 2. Quota evaluations in [ms] during a period of 24 hours.

7. Conclusion
Rucio, the data management system of the ATLAS experiment replaced DQ2 in 2014. Since
then, Rucio provided many new features to the users and sub-systems of the Collaboration.
Rucio was introduced with an initial quota system, but during operation it turned out to not
fully satisfy the policy needs of the collaboration. In this article, we introduced a new quota
system for Rucio. We first discussed replica accounting and quotas and their evolution in
the different ATLAS distributed data management systems. We then introduced a new quota
concept for Rucio and showed the architecture and workflow of the system. We also discussed
how the performance critical parts of the workflow are efficiently designed. We then evaluated
the new quota system by comparison with the current quota system of Rucio.

References
[1] ATLAS Collaboration 2008 Journal of Instrumentation 3 S08003 URL

http://dx.doi.org/10.1088/1748-0221/3/08/S08003

[2] Bird I, Bos K, Brook N, Duellmann D, Eck C, Fisk I, Foster D, Gibbard B, Girone M and Grandi C 2008
EGEE, Technical design report CERN-LHCC-2005-024

[3] Branco M, Zaluska E, De Roure D, Lassnig M and Garonne V 2010 Concurrency and Computation: Practice
and Experience 22 1338–1364 URL http://onlinelibrary.wiley.com/doi/10.1002/cpe.1489/full

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

7



[4] Barisits M, Serfon C, Garonne V, Lassnig M, Stewart G, Beermann T, Vigne R, Goossens L, Nairz A, Molfetas
A and on behalf of the ATLAS Collaboration 2014 Journal of Physics: Conference Series 513 042003 ISSN
1742-6588

[5] Garonne V, Vigne R, Stewart G, Barisits M, Eermann T B, Lassnig M, Serfon C, Goossens L, Nairz A and on
behalf of the ATLAS Collaboration 2014 Journal of Physics: Conference Series 513 042021 ISSN 1742-6588

[6] Python Software Foundation 2015 URL https://docs.python.org/2.6/ Accessed on the 23 of April 2015
[7] Fielding R T and Taylor R N 2002 ACM Transactions on Internet Technology (TOIT) 2 115—-150
[8] Bayer M 2015 URL http://www.sqlalchemy.org/. Accessed on the 22 of April 2015

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062002 doi:10.1088/1742-6596/664/6/062002

8


