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Abstract.

Monitoring the WLCG infrastructure requires the gathering and analysis of a high volume of
heterogeneous data (e.g. data transfers, job monitoring, site tests) coming from different services
and experiment-specific frameworks to provide a uniform and flexible interface for scientists
and sites. The current architecture, where relational database systems are used to store, to
process and to serve monitoring data, has limitations in coping with the foreseen increase in
the volume (e.g. higher LHC luminosity) and the variety (e.g. new data-transfer protocols and
new resource-types, as cloud-computing) of WLCG monitoring events. This paper presents
a new scalable data store and analytics platform designed by the Support for Distributed
Computing (SDC) group, at the CERN IT department, which uses a variety of technologies
each one targeting specific aspects of big-scale distributed data-processing (commonly referred as
lambda-architecture approach). Results of data processing on Hadoop for WLCG data activities
monitoring are presented, showing how the new architecture can easily analyze hundreds of
millions of transfer logs in a few minutes. Moreover, a comparison of data partitioning,
compression and file format (e.g. CSV, Avro) is presented, with particular attention given to
how the file structure impacts the overall MapReduce performance. In conclusion, the evolution
of the current implementation, which focuses on data storage and batch processing, towards a
complete lambda-architecture is discussed, with consideration of candidate technology for the
serving layer (e.g. Elasticsearch) and a description of a proof of concept implementation, based
on Apache Spark and Esper, for the real-time part which compensates for batch-processing
latency and automates problem detection and failures.

1. The evolution of WLCG activities monitoring

Monitoring computing activities in the Worldwide LHC Computing Grid (WLCG) [1], such as
job processing, data access and transfers or sites availability, requires the gathering of monitoring
data from geographically-distributed sources and the processing of such information to extract
the relevant value for WLCG users, computing teams of the WLCG organizations and WLCG
site operators. Current monitoring systems have proven to be a solid and reliable solution to
support WLCG functions and operations during LHC data-taking years. A variety of data
coming from different services and experiment-specific frameworks is gathered, processed and
archived and a generic web-based dashboard provides a uniform and customisable monitoring
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Figure 1. Daily volume of monitoring events for WDT dashboards.

interface for scientists and sites. Nevertheless, the current architecture, where relational database
systems are used to store, to process and to serve monitoring data, has limitations in coping
with the foreseen increase in the volume (e.g. higher LHC luminosity) and the variety (e.g. new
data-transfer protocols and new resource-types, such as cloud-computing) of WLCG monitoring
events. This paper presents the new data store and analytics platform which is going to be used
for the evolution of WLCG activities monitoring.

1.1. WLCG data activities dashboards

The Experiment Dashboard (ED) [2] is a generic monitoring framework which provides uniform
and customisable web-based interfaces for scientists and sites. Monitoring events, such as data
transfers or data processing jobs reports, are collected and analysed to produce summary time-
series plots used by operators and experts to evaluate WLCG computing activities. The WLCG
Data acTivities (WDT) dashboards are a set of monitoring tools based on the ED framework
which are used to monitor data access and transfer across WLCG sites via different protocols
and services. Monitored services include the ATLAS Distributed Data Manamegement (DDM)
system, XRootD and HTTP federations and the File Transfer Service (FTS). The WDT use
case is one of the most data intensive ED applications. Figure 1 presents the daily volume of
monitoring information handled by WDT, with an overall average of more than 20 million daily
monitoring events. Today, WDT dashboards are suffering from the limitation of the current
processing infrastructure, as presented in the next section. For this reason, WDT is taken as a
case study for the new analytics platform.

1.2. Towards a new approach for data store and processing

The current ED architecture relies on an Oracle database to store, to process and to serve
the monitoring data. Raw monitoring events are archived in tables for several years, periodic
PL/SQL jobs run at regular interval (10 minutes) to transform the fresh raw data into
summarized time-series statistics and feed them in dedicated tables, from where they are exposed
to the web-framework for user visualization. For data intensive use cases, such as WDT,
this approach has several limitations. Scalability is difficult to achieve, PL/SQL execution
time fluctuating from tens of seconds to minutes as a consequence of the input rate spikes,
affecting user interface latency. Advanced processing algorithms are complex to implement in
PL/SQL within the dashboard 10 minutes time constraint, and reprocessing of the full raw
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data can take days or weeks. Moreover, the other dashboard components involved in data
collection, pre-processing and insertion are suffering from fragility and complexity, leading to
higher maintenance and operational costs and human faults. Considering the foreseen increase
in the WLCG monitoring data volume and variety of monitoring events for the upcoming LHC
runs, data store and processing technologies which scale horizontally by design, such as Hadoop,
are suitable candidates for the evolution of the monitoring infrastructure.

2. The lambda architecture
In recent years, the challenge of handling a big volume of data has been taken on by many
companies, particularly in the internet domain, leading to a full paradigm shift on data archiving,
processing and visualisation. A number of new technologies have appeared, each one targeting
specific aspects on big-scale distributed data-processing. All these technologies, such as batch
computation systems (e.g. Hadoop) and non-structured databases, can handle very large data
volumes with little cost but with serious trade-offs. The goal is to architect a new platform in
a tool-chain approach building on the most appropriate technologies and computing techniques
for the WLCG use case.

In this direction, the lambda architecture, presented by Marz in [3] and successfully adopted
by companies such as Twitter for data analysis, identified 3 main components to build a scalable
and reliable data processing system:

e the batch layer, to store a steadily growing dataset providing the ability to compute
arbitrary functions on it;

e the serving layer, to save the processed views, using indexing techniques to make them
efficiently query-able;

e the real-time layer able to perform analytics on fresh data with incremental algorithms
to compensate for batch-processing latency.

2.1. Difference between WDT and the classic lambda use case

In the classic lambda application each monitoring event only contributes to the most recent view
(e.g. a web server user access for a web analytics application only affects the user count in the
last time bin). For the WLCG monitoring use case, this is not true. A monitoring event, such
as a completed file transfer lasting several hours from WLCG site A to site B, contributes also
to several time bins in the past, so that the information about the average traffic from site A to
site B has to be updated accordingly with the new monitoring information. Without this initial
hypothesis, the merging of batch and real-time processing becomes more complex, as discussed
in section 3.

3. The new data store and analytics platform for WLCG monitoring

The new data store and analytics platform for WLCG monitoring is presented in Figure 2
and it builds on a number of existing technologies and tools in order to promote mainstream
solutions and to minimize in-house code development. The WLCG monitoring problem has been
threated as a pure analytics scenario where the driving concepts, as by the lambda principles,
are to collect and to store the raw data, to minimize pre-processing and to concentrate analysis
and transformation on the same framework with batch and real-time components.

3.1. Data transport: Message Broker

The transport layer plays a key role in the new monitoring architecture. Firstly, it decouples the
producer and the consumer of the monitoring data. Given that the information is produced by
a variety of heterogeneous applications and services in WLCG, this is a fundamental part of the
system functionality. Secondly, it allows multiple consumers to use the same data via on-demand
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Figure 2. The new data analytics platform for WLCG monitoring.

public/subscribe API. This situation is often the case for monitoring data, which is also being
used by LHC experiment specific frameworks. Thirdly, the architecture can rely on message
brokers as a service provided by the CERN IT infrastructure. Currently, the broker technology
used is ActiveMQ and the monitoring events are reported as JSON records via the STOMP
protocol. A possible future evolution is to explore tools such as Apache Kafka, a specialized
broker which improves the handling of big data volumes and works at a higher data rate.

3.2. Data collection: Apache Flume

Apache Flume is used as the data collector agent. It receives monitoring events from the
transport layer and creates HDFS files in the archive layer for later processing. It replaces a
custom collector previously developed for the ED framework, providing better performance and
reliability. Flume connects to the brokers using the standard JMS source and writes to the
storage layer via the standard HDF'S sink.

3.3. Batch processing: Apache Hadoop

Hadoop is a distributed processing framework which allows the computation of large data sets on
computer clusters built from commodity hardware. Initially focused mainly on batch-processing
via the MapReduce primitives [4], modern Hadoop supports multiple processing technology, such
as Apache Spark. MapReduce is the de-facto standard for batch processing and its computation
paradigm fits extremely well with the WDT use case, as presented in section 4. WDT batch-
processing is implemented as periodic MapReduce jobs running on the Hadoop infrastructure
provided from CERN IT. The job algorithm is stateless and idempotent, the full data set which
can contribute to the results (e.g. 3 days of data) being re-processed at each run. Job results
are written into the serving layer (i.e. Oracle table), which is then used to build the web
visualization. Moreover, WDT jobs also support Apache Spark [5] as a processing framework.
Spark is a modern distributed processing technology, running on Hadoop or on standalone
clusters, which improves the MapReduce paradigm with a better in-memory computational
model. In addition, it also supports data streaming, which is useful in a lambda architecture to
limit code differences between batch and real-time. This flexibility is achieved via the common
WDT library presented below, which abstracts shared functionalities and algorithms.
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3.4. Real-time processing: Spark streaming and Esper

Spark provides a streaming API for distributed processing of event streams. A continuous flow
of data is divided into micro-batches (e.g. 10 seconds of events) which can then be processed as
if they were local data sets via standard Spark in-memory primitives. Spark streaming jobs have
been implemented to compute WDT statistics on fresh monitoring events via an incremental
algorithm. Being incremental hence not idempotent, special care is required in handling event
duplication and multiple processing, leading to a more error prone computation. For this reason,
and as by the lambda principles, the results from the streaming jobs are continuously overwritten
by the batch processing at each run (e.g. every hour). Moreover, WDT streaming jobs were
also implemented using the open source event processing library Esper [6]. Compared with
the basic Spark primitives, Esper SQL-like language offers much more advanced controls in
processing streams over time. For the WDT use case, where a basic map/reduce paradigm
fits the algorithm, the raw Spark primitives were preferred, but Esper remains a valid option
for other WLCG monitoring use cases when more advanced processing is required. A possible
evolution in this direction is to investigate Esper as an embedded Spark streaming operator.

3.5. Archiving: HDFS

The Hadoop framework is built on the Hadoop Distributed File System (HDFS) and executes
I/0 operations on it. HDFS is designed for large data files, in the order of GigaBytes in size. The
data is broken into blocks and replicated across multiple hosts in the cluster. This guarantees
scalability on commodity hardware, fault tolerance and high throughput. HDFS is data format
independent, it supports multiple data representations, from simple text to structured binary.
Section 4 presents the data format evaluation performed for the WDT use case.

3.6. The Dashboard Common library

A common drawback of the dual processing nature of the lambda architecture is the code
duplication in the real-time and the batch processing layer. In order to limit this effect a Java
library has been developed to abstract the common functionalities for the WDT use case. The
library provides data parsing, supporting marshalling and un-marshalling in several formats,
such as JSON, CSV, Avro, and also provides data validation and compression. Most importantly,
it implements the algorithm to emit key-value pairs for each monitoring events received. The
library played a major role in porting the WDT jobs to different processing technologies (e.g.
MapReduce, Spark) with minimal code change.

3.7. The serving layer

With the data archiving and processing delegated to the other components, the serving layer is
solely responsible for serving the computed statistics to the ED web framework. In light of this
simplified requirement, for the WDT use case the serving layer can be easily implemented via
relational databases as well as by non-relational technology. In the new data analytics platform
the serving layer is still implemented using an Oracle database provided from CERN IT database
service. A promising investigation, still ongoing, is pointing at Elasticsearch as a particularly
good candidate to replace the current database.

4. Implementation of WDT analytics on the new platform

The current architecture uses PL/SQL procedures for aggregating and computing raw data
into statistics with different time period granularities and stores them into a statistics table.
WLCG data servers can produce monitoring logs at 1 kHz, with such a rate that the PL/SQL
procedure cannot cope with the overwhelming amount of data, which takes over ten minutes to
process every ten minutes worth of data. The new analytics platform relies on Hadoop and its
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Figure 3. MapReduce computations diagram.

MapReduce framework to overcome the current latency and scalability issues. MapReduce is
a programming paradigm that was designed to remove the complexity of processing data that
are geographically scattered around a distributed infrastructure [4]. It hides the complexity
of computing in parallel, load balancing and fault tolerance over an extensive range of
interconnected machines. There are two simple parallel methods, map and reduce, which are
predefined in the MapReduce programming model and are user-specified methods that are used
to develop the analytics platform.

Figure 3 shows an how WDT MapReduce jobs are carried out by each component within the
MapReduce framework:

(i) A splitter will split the monitoring data into lines and feed them into mappers.

(ii) A mapper will process the line; breaking them into the time bins in which they belong and
calculating the transfer matrices. Finally, it will emit key/value pairs for each time bin.

(iii) A combiner will run after each map task and aggregate a map output result, decreasing the
number of metrics sent to the reducer.

(iv) The output of the combiner is then shuffled and transferred to a reducer that is responsible
for processing the key and carrying out the final summing.

(v) A reducer will aggregate and output the final results.

4.1. Data representation
In the current architecture the data are partitioned in HDFS, as shown in Figure 4, for efficient
processing, as this will support the processing of data by specified date ranges.

AVRO vs CSV vs JSON for 1 Day FAX data
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Figure 4. HDFS data partitioning. Figure 5. Data format comparison.



21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052023 doi:10.1088/1742-6596/664/5/052023

Three different data formats were evaluated to store WDT monitoring data on HDF'S:

(i) Avro is a data serialisation framework that serialises the data into a compact binary format,
so that it can be transferred efficiently across the network.

(ii) Comma-Separated Value (CSV) is a table format that maps very well to the tabular data.
(iii) JavaScript Object Notation (JSON) is primarily a way to store simple object trees.

Figure 5 shows data representing 1 (average) day of monitoring events for the ATLAS XRootD
federation (FAX) on HDFS which occupies 1211 MBytes in Avro, 1367 MBytes in CSV and
2669 MBytes in JSON file format. As expected, the Avro format is more compact than CSV
and JSON. This is because the binary version of Avro is used, whereas CSV comprises human
readable comma-separated columns and JSON contains tree structured data. The JSON format
took a larger space because it holds both column name and data, whereas CSV only holds the
data that are separated by comma. This has resulted in a 122.21% increase in volume for JSON
data and a 12.88% increase in volume for CSV data compared with Avro, while there is a 96.85%
increase in volume for JSON data compared with CSV. The data were also compressed using the
Snappy compression library, which is very fast but the compaction ratio is very low compared
with other libraries. Again, compressed Avro data takes up much less room than the CSV as
there is a 20.90% increase in volume. It can be seen that compressed data took over 5 times
less space than uncompressed. The test results, combined with the additional benefits of being
schema-based and its multi-language support, make Avro the preferred option for the WDT use
case.

5. Performance results for WDT computation on the new platform

In order to evaluate the execution time of jobs on the new platform architecture, it was decided
to compute FAX dataset by days, ranging from: 1 day, 3 days, 7 days and 21 days. Jobs were
submitted a few times for each dataset in order to capture an average performance time. The
performance measurements were carried out on a heterogeneous Hadoop cluster that consisted
of fifteen nodes (8 nodes: 32 cores/64GB, 7 nodes: 4 cores/8GB).

The main result, as presented by the plot in Figure 6, is that the jobs were able to successfully
process all data ranges in at most just few minutes. This result alone satisfies the WDT
requirement of updating monitoring information every 10 minutes with fresh data and allows for
re-processing of years of monitoring logs. Moreover, it demonstrates the scalability of the system
over different data volumes. In general, computation of uncompressed data was faster than
compressed data with the exception of JSON data as it is very large compared to other formats.
It is understandable why compressed data were slow to process as the data will need to be
uncompressed before processing and will therefore add additional overheads to the computation
time. Although uncompressed Avro and CSV jobs were fast, the CSV appears to be the fastest.
This can be explained by the computing limitation of the cluster due to its heterogeneous setup.

It should be noted that largely there is not much difference between the execution time of the
process on the 1 day dataset compared with the 21 day dataset, while being many times bigger in
size. This demonstrates the scalability of the Hadoop system, which distributes the computation
across several nodes. Nevertheless, there is always a fixed overhead added to the job for finding
appropriate resources and submitting them. Even though the job is split into multiple map tasks
and sent to data nodes where the data reside in order to reduce the movement of large data
files over the network, the intermediate results of these tasks still need to be shuffled and shifted
around to reducers (most likely to different nodes) [4]. This could create a bottleneck in the
network, so in order to minimise this issue, it was decided to compress the intermediate results,
improving by ~ 2 seconds the time for transferring them to the reducer nodes. This results were
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Figure 6. Computation of Compressed/Uncompressed Avro, CSV and JSON files over different date
ranges. The primary axis (a) shows the execution time that is being represented by lines, whereas the
secondary axis (b) represents the input data size in Megabytes (MB) which is represented by bars.

obtained using the MapReduce version of the WDT jobs, but comparable measurements have
been observed using Apache Spark for batch processing.

6. Conclusion and next steps

The new data store and analytics platform presented in this paper is a scalable, simplified and
effective solution for WLCG activities monitoring. It builds on a set of mainstream technologies,
and uses the lambda architecture principles to assemble them in a reliable and effective way.
The performance test results show how the MapReduce/Spark approach outperforms the current
system and that it can scale horizontally to support the increase of the volume and the variety
of WLCG monitoring events in the upcoming years of LHC data taking.

The next steps are to complete the migration of the WDT dashboards to the new architecture
and to evaluate the new platform for the other Experiment Dashboard applications. Further
investigation into the serving layer technology and the optimal strategy for integrating batch
and real-time data processing is ongoing.
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