21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

Indico — the Road to 2.0

P Ferreira, A Avilés, J Dafflon, A Moénnich, I Trichopoulos
513-1-008, CERN CH-1211, Geneve 23, Switzerland

E-mail: indico-team@cern.ch

Abstract. Indico has come a long way since it was first used to organize CHEP 2004.
More than ten years of development have brought new features and projects, widening the
application’s feature set and enabling event organizers to work even more efficiently. While
that has boosted the tool’s usage and facilitated its adoption by a remarkable 300,000 events
(at CERN only), it has also generated a whole new range of challenges, which have been the
target of the team’s attention for the last 2 years. One of them was that of scalability and
the maintainability of the current database solution (ZODB). After careful consideration, the
decision was taken to move away from ZODB to PostgreSQL, a relational and widely-adopted
solution that will permit the development of a more ambitious feature set as well as improved
performance and scalability. A change of this type is by no means trivial in nature and requires
the refactoring of most backend code as well as the full rewrite of significant portions of it. We are
taking this opportunity to modernize Indico, by employing standard web modules, technologies
and concepts that not only make development and maintenance easier but also constitute an
upgrade to Indico’s stack. The first results are already visible since August 2014, with the full
migration of the Room Booking module to the new paradigm. In this paper we explain what has
been done so far in the context of this ambitious migration, what have been the main findings
and challenges, as well as the main technologies and concepts that will constitute the foundation
of the resultant Indico 2.0.

1. Introduction

Indico'! was born of a European Project, a joint initiative of CERN, SISSA, University of
Udine, TNO, and Univ. of Amsterdam. The main objective was to create a web-based, multi-
platform event storage and management system. This software product would allow the storage
of documents and metadata related to scientific conferences and workshops. The project started
in May 2002, and ended 2 years later. After the end of the European Project, CERN took
over the core modules that had been developed internally and put them together in a software
platform aimed at fulfilling its own needs. Indico started as an Open Source project under the
GPL version 2 (and later version 3) and so it has remained to this day — the entirety of its code
is available online, through the project’s GitHub repository?.

Over the years, Indico has evolved into a more general event management solution. Although
its initial goal was to provide conference organizers with a set of tools that could help
them through the entire conference life cycle, this initial feature set was extended to other
organizational events (such as meetings and lectures). It has since grown to include other
functionalities such as a full-fledged Room Booking module. In 2009 Indico became CERN’s

L Originally spelled InDiCo, or “Integrated Digital Conference”
2 http://github.com/indico/indico

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

official hub for collaborative tools, providing a common user interface for video-conferencing,
chat and webcasting/recording systems. As the project grew, other organizations in the High
Energy Physics realm started using it, effectively creating a network of more than 150 different
servers, distributed across 4 continents. The Indico Community keeps growing day by day. At
the time of the writing of this article, Indico’s latest release is version 1.2.

More information about the features that Indico provides can be obtained through its official
website?.

Past debts

It’s been more than two decades since Ward Cunningham first coined the term “Technical
debt”[1]. The power of this well-known software development metaphor may not be obvious at
first, and its main message is for sure not unknown to virtually any software developer: bad code
generates more bad code and the sooner it is stopped the better. But its uniqueness comes from
the scenarios that can be built from it: software developers borrow time by writing lower quality
code and/or delaying the “payment” of past debts (e.g. by postponing a refactor/rewrite).
This “borrowed time” will have to be eventually paid back with higher quality code. Software
projects that pay upfront will not benefit from the advantage of an initial “loan”, while the ones
that postpone their payments will instead have to contract loan after loan, many times risking
“bankrupcy” (non-maintainability). Few metaphors can be as powerful as this one.

The bulk of Indico’s source code was developed between the years 2002 and 2008. This
is what is now called MaKaC* or simply “legacy code”. This layer was expanded upon in
2008, when a series of AJAX-powered interfaces were added to the application, opening way
to version 0.97[2]. By this time, a plugin system was added on top, which allowed for new
code to be written without having to be placed within the application core — this has positively
contributed to the maintainability aspect. However, between 2008 and 2011 Indico experienced
an explosive growth in the amount of functionality provided. It was also by this time that
the development team consolidated itself, with longer term resources assigned to the project
and standard development practices as well as software testing finally in place. The price
of this growth was, however, partially paid with technical debt. During this period, Indico
greatly benefited from the contributions of students from different schools. Those were mostly
junior developers who would work on a single sub-project or task. This “debt” was essential in
effectively integrating those contributions into Indico’s source base. The peak of the number of
Python lines of code was attained in 2012 (160 kSLOC) and it has been decreasing ever since
(115 kSLOC at the time of writing).

Code quality-related debt is common in most software projects — the fact that it is something
really hard to measure means that it is hard to estimate its prevalence, but very few software
projects can say that their code base is free of imperfections or “quick and dirty” fixes. Indico, of
course, is no exception. But it differentiates itself from most software projects in a fundamental
issue which underlies a great share of the recent “loans”.

Indico was from the beginning experimental in nature. That meant, among other things,
using technologies that were less conventional back in those days. Such an example is the choice
of Python as the main programming language for the project. This seems to have been a good
choice, since Python has since become one of the most popular programming languages in the
world[3] and frameworks such as Django® and Flask® became essential tools in the lives of many

3 http://indico-software.org

4 MaKaC is the original name of the module that CERN contributed to the European Project and eventually
became to mean “Indico”

5 http://www.djangoproject.com

5 http://flask.pocoo.org

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

web developers. A more controversial choice was that of the ZODB” as main storage for the
application. The golden age of object-oriented databases (the late 90s and early 2000s) seems
to have passed, and the excitement around those products has naturally cooled down. Despite
being a remarkable piece of software engineering (supporting ACID transactions, history and
blob storage), the ZODB seems to be, at the time of writing, a niche product with a small and
potentially shrinking user base. Its 100% language-dependant approach may have contributed
to this, as well as its lack of built-in indices and ad-hoc queries.

1.1. The database problem

It is impossible to reject the role of the ZODB in the technical debt that Indico accrued over
the years — after all, it works transparently with seemingly “native” Python objects, both its
main advantage and its greatest flaw. Choosing the ZODB simply meant rejecting any possible
isolation between database and business logic at the code layer. This closed the door for an easy
exit strategy and limited the directions the development could be steered into. At the same
time, Indico has shown to evolve in directions that steered away from what can be considered
Z0ODB’s main playing field: large-scale storage of separate objects that require a limited number
of query operations.

The ZODB posed other problems as well, such as the lack, for many years, of an affordable
solution for replication. ZRS (“ZODB Replicated Storage””) was not open-sourced until mid-
2013, when it was already clear that an alternative had to be found. In addition to that, the
small size of the ZODB community meant that very few 3" party tools were available and the
documentation was pretty scarce, which made the job of new and potential contributors much
harder than with competing technologies.

2. The plan

In 2014, Indico finally got the resources that it needed in order to start paying its long-standing
technical debt. The aim was to finally abandon the ZODB and slowly move to a PostgreSQL-
based solution. SQLAlchemy®, a database-agnostic solution for Object-Relational Mapping
(ORM) was chosen as the insulation layer between business logic and database. Throughout
this process, several things would be changed — a move of this dimension would mean rewriting
tens of thousands of lines of code and possibly whole application modules. It would have been a
waste of resources and a lost opportunity if this were limited to a simple database “port” without
any kind of modifications in the underlying technology — this was the moment to change things,
and that was taken very seriously into account.

The plan would consist of a cycle of intermediate releases that would happen between the
last release of the fully ZODB-based Indico (version 1.2) and the new PostgreSQL-based system.
Those would be minor releases of the 1.9 branch, short-lived, in intervals that would range (with
the exception of the first two) between 1 and 2.5 months. Indico’s development practices could
comfortably accommodate this kind of process — a highly agile environment combined with
permanent code reviews and testing as well as iterative steps based on small tasks and constant
re-assessment of progress and priorities.

During this time, CERN’s Indico instance would be using a dual-DB setup, with PostgreSQL
taking a larger and larger share of data with each successive release. The complexity of this setup
was known to be significant from the beginning — commits would be happening on two completely
different databases at the same time and data from heterogeneous backends/technologies would
have to be joined together. This is the main reason why it was decided that throughout the
“migration period” there would be no public releases of Indico. In the end, Indico adopters

" http://www.zodb.org
8 http://www.sqlalchemy.org

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

would just see a version 2.0 that would “magically” know how to migrate their data to the new

backend.

3. Challenges and Solutions

Running a dual-database setup in a production environment as demanding as CERN’s is by no
means an easy task, even more so if this implies constant changes in both databases, with each
incremental release offloading an increasingly greater share of data on to PostgreSQL. There are
several issues that, in Indico’s case, constitute important challenges:

(i) Commit synchronization — database commits need to be simultaneous, and rolled back if a
problem happens in either store;

(ii) Data migration — Information contained within ZODB objects needs to be migrated to a
relational structure in an automated way. Other Indico instances should be able to use this
mechanism without major issues;

(iii) Diversity of schemas — Different versions of Indico have different “schemas”®. The migration
mechanism should be able to migrate any Indico instance to the new backend;

(iv) Diversity of relational schemas — There would also exist different versions of the relational
schema (one per intermediate release and then for each future version) which would need
to be upgraded in an easy and transparent manner;

(v) Cross-database references — ZODB objects are highly interconnected. At all times it is
necessary to have PostgresSQL tables referencing ZODB objects and vice-versa.

Fortunately, there was already a solution for 4 a small third-party library called
zope.sqlalchemy'” provides synchronization between the “Zope Transaction Manager” (which
manages commit and roll-back operations in ZODB) and SQLAlchemy, thus allowing dual-DB
operations to happen in a transparent manner.

There was, however, a need for better tools that could turn 7 and ¢ into non-issues. Since
version 0.98, a “migration script” is distributed with Indico, which is capable of upgrading the
“schema” of a sufficiently recent yet older version of the Indico database to the latest one. This
started as an attempt to unify all previously existing partial migration scripts that had to be run
in a specific order so as to provide the user with the desired outcome. It would automatically
detect which migration steps were needed and execute them after user confirmation. This
mechanism was not scalable for an operation that required cross-database data migration, not
to mention that the “highly embedded nature” of ZODB would make it very difficult to use
it after the actual ZODB object definitions were removed from the code base. A simple yet
effective migration mechanism was then developed, called zodbimport, which is capable of
inspecting the ZODB database root even in the presence of broken persistent objects, thus
enabling the developer to write highly modular “translation code” or “importers” that create
the corresponding data structures in the relational backend. This mechanism is extensible to
Indico plugins and announces itself through setuptools’ entry point mechanism. It is fully
integrated with Indico’s existing Command-Line Interface (CLI).

Solving v was once again facilitated by the existence of a third party Python package,
alembic!!, that integrates with SQLAlchemy as to provide bi-directional migration between
different versions of a database schema. The migration scripts can be auto-generated to a very
helpful degree of accuracy. The migration process was also integrated into Indico’s CLI: indico

® Since the ZODB is an OODBMS, by “schema” we mean a loose definition of the hierarchical structure of ZODB
persistent objects.

Y nttps://github. com/zopefoundation/zope.sqlalchemy/

" https://alembic.readthedocs.org/

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

db upgrade, for instance, will attempt to upgrade the existing database schema to the latest
version available.

Finally, the topic of cross-database references (v), one of the most complex in terms of possible
ramifications of its behaviour, ended up being solved through the combination of weak references,
proxy objects and adapters.

SQLAlchemy — ZODB references were easily tackled through the use of weak references. For
instance, an entry of the rooms table (or corresponding SQLAlchemy object Room) would contain
a column owner_id that would hold the identifier for an existing Indico user. The downside of
this approach is evident: cascading cannot be implicitly applied and there is the danger for
“dangling references”. Careful inspection of the code and intensive testing assured that no
“loose ends” were left behind — in reality, Indico users are never removed (only potentially
merged), but the problem could have been easily solved through explicit re-allocation of the
room to another user, its “orphaning”, or simply its deletion.

ZODB — SQLAlchemy references were obviously harder to work around, since ZODB data
is by nature object-oriented and schema changes come at a very high cost. Simply replacing
the reference to a “user object” with the corresponding ID would take several hours, only for
the ensemble of events contained within CERN’s Indico database. Typically, such an operation
would instead take more than a half-day, since user objects are referenced from several other
objects in addition to events/conferences: things such as contributions, materials and access
control lists (in growing order of nesting). Going over the whole ZODB and basically rewriting
it would be just infeasible. However, it is known (and logical) that ZODB saves the state of
each object that it has to store. This means the actual object attributes, but none of the
code contained in its methods. In addition to that, it provides an option that can override
the class of any object, right after loading it, with another one. This said, an Avatar object
(which represents a user) could be easily replaced with an AvatarUserWrapper at load time,
thus allowing for completely different behaviour. In this case the AvatarUserWrapper provides
the same interface of an Avatar object but ignores all ZODB-stored information (except for the
user ID), fetching it instead from SQLAlchemy/PostgreSQL. This ingenious application of the
“Adapter” design pattern[4] allows legacy code to work with users as if they were still stored
within ZODB while they are actually already stored in the new backend. Legacy code will be
eventually replaced, as the migration effort progresses, thus rendering those objects unnecessary.

Non-technical aspects

As easily noticeable, the technical part of this operation is already complex enough. But there
are other factors that impose significant restrictions on the work that is being done and increase
the amount of uncertainty involved therein.

The first point is the inherent difficulty in producing time estimates for such a project:
even though the objectives are clear, the percentage of the project’s code base involved is
very large and the nature of the work being done (refactoring, sometimes rewriting) adds
an extra dimension of indefiniteness. While traditional agile development tries to split the
problem domain in user stories that can then be estimated in greater detail[5], this kind of work
consists of sometimes “monolithic” tasks that cannot even be performed in parallel. Another
important factor is that we sometimes are working in “unchartered territory”, with technologies
and libraries that were previously unknown to us in detail. In a team that has to be agile and
responsive to change, it is imperative, in this kind of context, to make sure that information
circulates and everyone is aware not only of the new technologies that are being used but as well
of the code and data structures that were developed. This is why we have been reinforcing the
practice of pair-programming, at least at the beginning of each iteration/sprint. After initial
work in pairs, the team then splits the remaining work in smaller tasks and starts working on
them in parallel. This has proven to be effective as a means of knowledge transfer.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

The second point is the contradiction between the need for this project to last as little
as possible (for several reasons, among which the lack of external releases and the existence of
limited resources) and the nature of the work being done, highly iterative in nature and requiring
frequent deployment. An interval between releases of one month can be quite violent when it
comes to the amount of work involved, since there is the need for testing and consolidation,
which itself could take that amount of time in a normal development cycle. There is, thus, the
risk of delays being introduced — working with such limited time substantially decreases any
error margin that may exist.

Finally, it is hard to manage user expectations with such a tight release schedule. Not only
the fact that there is a lack of development time for tasks that would normally be targeted is at
play: the difficulty of accomplishing such tasks highly increases when they happen in parallel
to such important changes. It is, then, very important to synchronise such changes, when they
are feasible, with the ongoing changes. This is something that we’ve tried to do and has already
provided us with some “easy wins”.

4. Progress

1.9.0 — A first step

On the 13™ of August 2014, a new version of Indico was deployed in production at CERN.
It included a fully PostgreSQL-based Room Booking module and a new software stack based
on Flask, SQLAlchemy, Jinja'2, WTForms'® and other smaller 3'd party libraries that are now
standards in the Python web development scene. This release (1.9.0) was the first known
attempt at running ZODB and PostgreSQL in parallel in a production environment. The result
was extremely positive, with no serious issues reported and an immediate positive impact in the
performance of the room booking module.

1.9.1 — An extensible Indico
On the 3' of March 2015, version 1.9.1 reached production. It was once again a large
development effort, which saw a new, more extensible, plugin system be added on top of Indico.
This new system is a significant evolution as compared with the old one. In addition to being
completely based on the blinker!® signalling library, it allows plugins to define their own code
modules, URLs, templates, static resources, translation libraries and even documentation. This
was only partially possible before.

As fig. 1 goes on to show, the evolution that the code base suffered from 1.2 to 1.9.1 alone
has been tremendous: not only the amount of legacy code decreased substantially (in about
36%) — the total amount of code itself also shrunk quite considerably (around 15%).

1.9.2 — The first large-scale migration
Version 1.9.2 marks the first step into Indico’s core, this time targeting user information. All
user accounts will be migrated from ZODB to PostgreSQL. At the time of writing, the release
is nearing completion and will be installed in production at CERN on the 4" of May. Some
of the technical issues that we bumped into as well as solutions for them have been already
documented above. This is also the first release of a series of six (up to 1.9.7) that will be very
short in duration.

An overview of migrated modules and those that still have to be addressed may be seen in
fig. 2.

2 http://jinja.pocoo.org
Y3 http://wtforms.simplecodes.com
" nttps://pythonhosted. org/blinker/

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015)

IOP Publishing

Journal of Physics: Conference Series 664 (2015) 052012

Code Refactoring (2014 - 2015)

240000

180000

120000

60000

v1.2

v1.8.1

doi:10.1088/1742-6596/664/5/052012

[CERN-

specific
[Plugins
I indico.*
[| MaKaC

Figure 1. Evolution of the distribution of lines of (Python) code in Indico

Category Management

Core Event Management

Timetable management

Access Control

Abstract / Contributions

| Abst. reviewing ‘ ‘ Paper reviewing |

File storage/management | Lists ‘ ‘ Track Management |

User/account management Participant Management

Reg. Form ‘ [Participant Mgt. |

HTTP API

Evaluation Form

Scheduler

Misc. Tools

Alarms

‘ ‘ Posters/Badges |

INJICD) [ew

Offline |

Figure 2. Modules that are already PostgreSQL-enabled (green) vs. legacy code (white).
Modules currently targeted are highlighted in yellow.

Plans
A series of additional releases have been already scheduled for the rest of the year. Those are
the stepping stones that will eventually lead to a fully-polished Indico 2.0:

1.9.3 (May) — Task queue, HTTP API and statistics fully migrated to PostgreSQL;
1.9.4 (July) — All references to material files in the new DB, as well as event logs;

1.9.5 (August) — Participant and registrant management fully stored in PostgreSQL;

1.9.6 (September) — Abstract and paper reviewing, timetable structure (contribu-
tions/sessions);

1.9.7 (December) — Category and event storage, protection scheme.

~

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052012 doi:10.1088/1742-6596/664/5/052012

The public release of Indico 2.0 is foreseen for the first quarter of 2015.

5. Conclusion

Indico has come a long way since its early days more than 10 years ago. It has grown to be
a full-featured application, an indispensable tool in the lives of many event organisers. This
growth brought with it new technical challenges as well as the need to move forward and rework
some of the pillars of the application. Change has always been present in the project and new
technologies have been welcomed one by one, but this database migration is unlike anything
before — its short release cycles are filled with intensive periods of work on specific areas of the
application.

We are conscious of how daring this operation is and the risks that it entails. Rather than
avoiding the latter completely, we have decided to control them — contingency plans are a
mandatory part of the carefully-planned delivery process that is in motion. More than that, this
process is being constantly reassessed, as we gradually “peel off” layer after layer.

So far, the results have been remarkably positive. The two already complete migrations
were long but happened with no problems. No technical issues worth being mentioned in this
document have been noticed. There certainly have been challenges, most of them related to the
large scale of the code base (which reached almost 160.000 lines of Python code alone, in 2012)
and the technical complexity of the operation (mostly due to its dual-database nature and the
large amount of data structures). However, the Team has managed to overcome all of those
and to deliver version after version. More than that, the code base has shrunk considerably
in size, as older code is replaced with better quality and simpler modules. Legacy structures
are being quickly and effectively phased out, opening the way to better and more manageable
implementations.

Indico seems to be sailing smoothly towards version 2.0. Waters will certainly be “wavier”
ahead, as we go deeper into the application core, but we are confident that our experience and
powerful tools will allow us to finish this journey in due time.

References

[1] Cunningham W 1992 The WyCash Portfolio Management System SIGPLAN OOPS Mess., April 1993 ACM,
New York, NY, USA

[2] Gonzalez Lopez, J B and Ferreira, J P and Baron, T 2010 Indico Central - Events Organisa-
tion, Ergonomics and Collaboration Tools Integration J. Phys.: Conf. Ser. 219 (2010) 082002
doi:10.1088/1742-6596/219/8/082002

[3] StackOverflow 2015 Developer Survey, available at
http://stackoverflow.com/research/developer-survey-2015

[4] Freeman E and Freeman E and Bates B and Sierra, K 2004 Head First Design Patterns O’Reilly

[5] Shore J and Warden S 2007 The Art of Agile Development O’Reilly

