
A Review of Event Processing Frameworks used in HEP

E Sexton-Kennedy1

1Fermilab, P.O.Box 500, Batavia, IL 60510-5011, USA

E-mail: sexton@fnal.gov

Abstract. Today there are many different experimental event processing frameworks in use by
running or about to be running experiments. This talk will discuss the different components of
these frameworks. In the past there have been attempts at shared framework projects for
example the collaborations on the BaBar framework (between BaBar, CDF, and CLEO), on the
Gaudi framework (between LHCb and ATLAS), on AliROOT/FairROOT (between Alice and
GSI/Fair), and in some ways on art (Fermilab based experiments) and CMS’ framework.
 However, for reasons that will be discussed, these collaborations did not result in common
frameworks shared among the intended experiments. Though importantly, two of the resulting
projects have succeeded in providing frameworks that are shared among many customer
experiments: Fermilab's art framework and GSI/Fair's FairROOT. Interestingly, several
projects are considering remerging their frameworks after many years apart. I'll report on an
investigation and analysis of these realities. With the advent of the need for multi-threaded
frameworks and the scarce available manpower, it is important to collaborate in the future;
however it is also important to understand why previous attempts at multi-experiment
frameworks either worked or didn’t work.

1. Introduction

Since there have been event processing framework reviews in the past, it is legitimate to ask, why
review them now? It is generally accepted that we are in the midst of a second paradigm shift from
single threaded applications to multi-threaded applications, motivated by industry trends[1]. The first
shift was the move from Fortran based applications to C++ based ones. At that time a number of new
event processing frameworks were developed to help experiments meet this challenge. This second
shift promises to be even more disruptive then the first, which is why it is beneficial to reflect on, and
learn from that past experience, as well as examine the framework software status of the field now.

2. Framework Collaborations

2.1. A Case History of Framework Collaboration: The BaBar, CDF, and Cleo Collaboration

During the 1997 CHEP conference a number of us from BaBar, CDF, and CLEO got together and
decided to collaborate on our existing event processing frameworks. For CDF and BaBar this was
easier since we had started from the same code base and it was really just a matter of remerging the
fork between our two respective repositories. With Cleo this collaboration was more about
exchanging ideas then exchanging code. The conference spawned several follow up meetings in San
Francisco and FNAL that moved the collaboration forward and for BaBar and CDF included a code
merge. The experience was written up and presented at the 1998 CHEP conference[2]. The lessons
learned are still applicable today, and bear repeating here:

1. It is possible to assemble a group of experts interested in infrastructure development from
different experiments to join forces on their work with benefits to everyone.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032026 doi:10.1088/1742-6596/664/3/032026

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2. The importance of early joint design sessions between different experiments can not be
stress enough. Maintaining constant communication is also paramount.

3. The most influential factor in the sharing success between CDF and BaBar was that both of
these experiments use the same file organization and building system called Software
Release Tools (SRT) and the same code management system, CVS.

4. In a collaboration like this it is key to be using the same foundational classes, and external
dependencies.

While the paper concludes, “The impact of this multi-experiment collaboration is found to be
positive.” it did not last for the entire running period of the experiments lifetime. Why?
Once BaBar started taking data in 1999, CDF and BaBar stopped synchronizing their repositories.
The pressure of taking data and the need for the quick fix in the middle of the night make collaboration
take a back seat. The tools available in the ‘90s were not adequate to the task of supporting a
geographically diverse multi-stakeholder project. A trusted cloud service, like GitHub that could host
a shared repository and make changes instantly viewable and testable in a continuous integration
system, did not exist then. Despite the fact that the collaboration went inactive the initial efforts to
collaborate still payed dividends. When BaBar was forced to migrate from RogeWave to the STL they
benefited from the adaptor classes written for CDF. The people who migrated from BaBar to CDF and
back, appreciated the fact that they did not have to learn a new event processing framework.

2.2. Active Collaborations Today

There are a number of active collaborations today. ATLAS and LHCb collaborate on Gaudi and
support a wider user community including GLAST, HARP, DayaBay, and MINERvA. ALICE and
GSI/Fair collaborate on AliROOT/FairROOT and their users include Panda, Cbm R3B MPD,
ASYEOS EIC. These collaborations are sharing code and participate in meetings together on a regular
basis. There is also a collaboration between CMS and the supporters of art that is similar in nature to
the older collaboration between CDF and CLEO, where ideas and designs are shared but not the code.
There are many users of art, Mu2e, Muon g-2, NOvA, MicroBooNE, LAriAT, Darkside-50, and
DUNE. Representatives from these experiments meet with the developers in a weekly “stakeholders”
meeting to discuss feature requests and bug reports[3].

An interesting thing to note about these groupings is their geographical clustering. In addition,
they have similar physics interests, for example, art for the neutrino experiments, FairROOT for heavy
ion physics. These factors have contributed to the success of these collaborations, which have existed
for many years. Clearly being able to meet face to face on a regular basis facilitates this success, but
do the different physics domains really require different event processing frameworks? or is this
clustering more the result of human factors; like people know each other because they go to the same
conferences, or they work at the same experimental sites, or both?

3. The Application Domain and Framework Components

In order to help answer the question posed at the end of the last section, it is worthwhile to examine
the components and facilities that these frameworks provide their users, and what application domains
they are used in within the experiments.

3.1. Framework Components

The major components of event processing frameworks are: 1. an execution engine including the
concept of event loops and scheduling of algorithms and filters within a single event. In some event
processing frameworks, filters can both prematurely stop stop further detailed processing of the
current event, and reject the event for output. 2. a configuration system implemented in some scripting

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032026 doi:10.1088/1742-6596/664/3/032026

2

language. There are some differences about the need for a Turing complete[6] language, verses a
declarative language, but all use the configuration system to specialize and modify the behaviors of
their plugin components, including the execution engine. 3. tools for building an event data model and
the persistence of that model to storage. 4. management of non-Event data such as detector conditions
data, luminosity or beam conditions, etc. 5. provenance and meta-data creation and management 6. a
service system which manages the shared resources needed by components. For example a message
logging system, where the shared resource is the job log file, is a straight forward service. 7. the
component architecture itself including plugin management, implemented through shared libraries, for
all of the elements described in

3.2. Application Domain

The space of applications that an experiment framework must provide is widely agreed. Primary
reconstruction, Event Generation and Simulation are the primary applications for experiment
processing frameworks. These applications read input files, apply processing steps and write output
files. (This statement holds even for event generators like Pythia, if one considers its large number of
parameter settings as input data.) While experiments differ in the complexity of their software triggers,
most experiments require high level online triggering and monitoring. The offline frameworks are
reused online to easily move algorithms for selection and monitoring from the offline environment in
which they are developed into the real-time context of data taking. The component nature of these
frameworks allows online input and output to be specialized for that purpose, without the users having
to be expert in their experiment’s DAQ systems. Most end user analysis in HEP is done with
ROOT[5]. However it is often the case that after the primary reconstruction, the resulting datasets are
too large and unwieldy for any end user analysis tool. Experiment event processing frameworks are
used to reduce the reconstruction datasets by means of: 1. reducing the number of events in a sample
by applying event selection criteria, 2. reducing the size of collections within selected events by
applying threshold cuts to the objects within a collection, for example in a TrackCollection you could
require each track saved to have a pT above some value, 3. reducing the size of the objects within a
collection, by restricting their information content to be only what is required for most analysis. The
information set required for downstream reconstruction components is often much larger then what is
required for end user analysis. Experiment event processing frameworks provide the tools necessary
to carry out this reduction with the components described in the previous paragraph so that the
resulting datasets are manageable and ready for user’s physics analysis.

4. Is Wider Field-Wide Collaboration Possible?

The basics of event processing frameworks enumerated in section 3 have not changed much in the past
decade. This can be seen from the talk I gave at the 2006 CHEP in India[4]. Note that nothing listed
above is really specific to any one frontier or domain.

It is very important to be wary of implementation details masquerading as requirements, there
are many ways of supporting a diversity of requirements within an existing framework. For example
some may claim that a streaming detector is different because it doesn’t have the concept of an event.
However DayaBay uses Gaudi. DayaBay is a small experiment whose detector operates in a
streaming mode. They adapted Gaudi, which was designed as an event processing framework, for all
of the reasons that are listed in reference[3].

The solution space for the components of event processing frameworks, is not that large, for
instance in the area of persistency, most use ROOT I/O, in the area of configuration, most use python
(including the very popular pyROOT interface to ROOT). In 2006 the diversity of solutions was
much larger. Now is the time to take advantage of this convergence within the field. The
communication tools for collaboration are much better. Most of us use Indico for meeting agendas,

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032026 doi:10.1088/1742-6596/664/3/032026

3

and are very familiar with remote participation tools like ReadyTalk or Vidyo. Code sharing
repository tools have been greatly improved by developers outside of HEP, and we are seeing a wide
adoption of git, which has much better support for distributed development. The movement within the
field to form a HEP software foundation is gaining traction, and has support from the experiments as
well as the funding agencies. All of these drivers lead me to conclude that the answer to the question
in the title of this paragraph is yes. Whether that collaboration is like the CDF-BaBar collaboration
described in 2.1, where code is shared, or more like the Cleo-CDF/BaBar collaboration, where ideas
and designs are shared, remains to be seen.

5. Conclusions and Outlook

Putting it all together there is a lot of motivation for wider collaboration on event processing
frameworks within the field of HEP. The challenge of the coming paradigm shift to parallel execution
of algorithms is large and it will require an expertise that few within the field possess. In the previous
shift from Fortran to C++, many of the more senior contributors to experiment software did not make
the transition to the new language and were therefore left behind. The need for a concurrent event
processing framework, which can shield algorithm writers from the complexities of multi-threaded
programming by devising simple rules to follow (like don’t use non-const global statics) and
minimizing what they need to know, is large, and required in order to not lose another large group of
scientist-programmers. With the advent of the need for multi-threaded event processing frameworks,
we should exploit all the expertise available in our experiments, and outside of them, to meet these
challenges. There are overheads in wide collaborations but we gain more by collaboration in the long
run than it costs initially. If successful the building of communities and shared experience as seen in
the intensity frontier and GSI/Fair can be extended to the whole community. At CHEP2015 CMS and
ATLAS core software groups arranged for a first meeting to discuss our multi-threaded frameworks.
For the next CHEP, with the multi-threading frameworks planned to be well established, it will be
interesting to see how much overlap and collaboration there is between HEP experiments for this
technology transition.

6. References

1. Sverre Jarp et al 2011 J. Phys.: Conf. Ser. 331 052009, “Evaluating the scalability of HEP
software and multi-core hardware” doi:10.1088/1742-6596/331/5/052009

2. R Jacobsen, Marc Turcotte, Elizabeth Sexton-Kennedy, Christopher D. Jones, Martin Lohner,
Simon Patton, “Engineering a Shared Software Base Between High Energy Physics
Experiments” http://www.lns.cornell.edu/~cdj/publications/conferences/CHEP98/
JointDesign.pdf

3. C Group 2015 J. Phys.: Conf. Ser. CHEP2015 “Computing at the Intensity Frontier” http://
indico.cern.ch/event/304944/session/15/contribution/554/material/slides/0.pdf

4. E Sexton-Kennedy 2006, “Event Processing Frameworks a Social and Technical Challenge”
http://indico.cern.ch/event/048/session/0/contribution/436/material/slides/0.ppt

5. https://root.cern.ch/drupal/
6. http://en.wikipedia.org/wiki/Turing_completeness

Acknowledgments

Fermilab: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the United States Department of Energy.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032026 doi:10.1088/1742-6596/664/3/032026

4

