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Abstract. Today there are many different experimental event processing frameworks in use by 
running or about to be running experiments. This talk will discuss the different components of 
these frameworks.    In  the past  there have been attempts  at  shared framework projects  for 
example the collaborations on the BaBar framework (between BaBar, CDF, and CLEO), on the 
Gaudi framework (between LHCb and ATLAS), on AliROOT/FairROOT (between Alice and 
GSI/Fair),  and  in  some  ways  on  art  (Fermilab  based  experiments)  and  CMS’ framework. 
 However, for reasons that will be discussed, these collaborations did not result in common 
frameworks shared among the intended experiments. Though importantly, two of the resulting 
projects  have  succeeded  in  providing  frameworks  that  are  shared  among  many  customer 
experiments:  Fermilab's  art  framework  and  GSI/Fair's  FairROOT.   Interestingly,  several 
projects are considering remerging their frameworks after many years apart. I'll report on an 
investigation and analysis of these realities.   With the advent of the need for multi-threaded 
frameworks and the scarce available manpower, it is important to collaborate in the future; 
however  it  is  also  important  to  understand  why  previous  attempts  at  multi-experiment 
frameworks either worked or didn’t work.

1. Introduction

Since there have been event processing framework reviews in the past, it is legitimate to ask, why 
review them now?  It is generally accepted that we are in the midst of a second paradigm shift from 
single threaded applications to multi-threaded applications, motivated by industry trends[1].  The first 
shift was the move from Fortran based applications to C++ based ones.  At that time a number of new 
event processing frameworks were developed to help experiments meet this challenge.   This second 
shift promises to be even more disruptive then the first, which is why it is beneficial to reflect on, and 
learn from that past experience, as well as examine the framework software status of the field now.

2. Framework Collaborations

2.1. A Case History of Framework Collaboration: The BaBar, CDF, and Cleo Collaboration

During the 1997 CHEP conference a number of us from BaBar, CDF, and CLEO got together and 
decided to collaborate on our existing event processing frameworks.  For CDF and BaBar this was 
easier since we had started from the same code base and it was really just a matter of remerging the 
fork  between  our  two  respective  repositories.   With  Cleo  this  collaboration  was  more  about 
exchanging ideas then exchanging code.  The conference spawned several follow up meetings in San 
Francisco and FNAL that moved the collaboration forward and for BaBar and CDF included a code 
merge.  The experience was written up and presented at the 1998 CHEP conference[2].  The lessons 
learned are still applicable today, and bear repeating here:

1. It is possible to assemble a group of experts interested in infrastructure development from
different experiments to join forces on their work with benefits to everyone.
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2. The importance of early joint design sessions between different experiments can not be
stress enough. Maintaining constant communication is also paramount.

3. The most influential factor in the sharing success between CDF and BaBar was that both of
these  experiments  use  the  same  file  organization  and  building  system called  Software
Release Tools (SRT) and the same code management system, CVS.

4. In a collaboration like this it is key to be using the same foundational classes, and external
dependencies.

While  the  paper  concludes,  “The  impact  of  this  multi-experiment  collaboration  is  found  to  be 
positive.” it did not last for the entire running period of the experiments lifetime.  Why?
Once BaBar started taking data in 1999, CDF and BaBar stopped synchronizing their repositories.  
The pressure of taking data and the need for the quick fix in the middle of the night make collaboration 
take  a  back  seat.  The  tools  available  in  the  ‘90s  were  not  adequate  to  the  task  of  supporting  a 
geographically diverse multi-stakeholder project.  A trusted cloud service, like GitHub that could host 
a  shared repository and make changes instantly viewable and testable in a  continuous integration 
system, did not exist then.  Despite the fact that the collaboration went inactive the initial efforts to 
collaborate still payed dividends.  When BaBar was forced to migrate from RogeWave to the STL they 
benefited from the adaptor classes written for CDF.  The people who migrated from BaBar to CDF and  
back, appreciated the fact that they did not have to learn a new event processing framework.

2.2. Active Collaborations Today

There are a number of active collaborations today.   ATLAS and LHCb collaborate on Gaudi and 
support a wider user community including GLAST, HARP, DayaBay, and MINERvA.  ALICE and 
GSI/Fair  collaborate  on  AliROOT/FairROOT  and  their  users  include  Panda,  Cbm  R3B  MPD, 
ASYEOS EIC.  These collaborations are sharing code and participate in meetings together on a regular 
basis.  There is also a collaboration between CMS and the supporters of art that is similar in nature to 
the older collaboration between CDF and CLEO, where ideas and designs are shared but not the code. 
There  are  many users  of  art,  Mu2e,  Muon g-2,  NOvA,  MicroBooNE,  LAriAT,  Darkside-50,  and 
DUNE.  Representatives from these experiments meet with the developers in a weekly “stakeholders” 
meeting to discuss feature requests and bug reports[3].

An interesting thing to note about these groupings is their geographical clustering.  In addition, 
they have similar physics interests, for example, art for the neutrino experiments, FairROOT for heavy 
ion physics. These factors have contributed to the success of these collaborations, which have existed 
for many years.  Clearly being able to meet face to face on a regular basis facilitates this success, but 
do  the  different  physics  domains  really  require  different  event  processing  frameworks?  or  is  this 
clustering more the result of human factors; like people know each other because they go to the same 
conferences, or they work at the same experimental sites, or both? 

3. The Application Domain and Framework Components

In order to help answer the question posed at the end of the last section, it is worthwhile to examine 
the components and facilities that these frameworks provide their users, and what application domains 
they are used in within the experiments.

3.1. Framework Components

The major components of  event processing frameworks are:  1.  an execution engine including the 
concept of event loops and scheduling of algorithms and filters within a single event.  In some event 
processing  frameworks,  filters  can  both  prematurely  stop  stop  further  detailed  processing  of  the 
current event, and reject the event for output.  2. a configuration system implemented in some scripting 
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language.  There are some differences about the need for a Turing complete[6] language, verses a 
declarative language, but all use the configuration system to specialize and modify the behaviors of 
their plugin components, including the execution engine.  3. tools for building an event data model and 
the persistence of that model to storage.  4. management of non-Event data such as detector conditions 
data, luminosity or beam conditions, etc. 5. provenance and meta-data creation and management 6. a 
service system which manages the shared resources needed by components.  For example a message 
logging system, where the shared resource is the job log file, is a straight forward service.  7. the 
component architecture itself including plugin management, implemented through shared libraries, for 
all of the elements described in 

3.2. Application Domain

The space of applications that an experiment framework must provide is widely agreed.  Primary 
reconstruction,  Event  Generation  and  Simulation  are  the  primary  applications  for  experiment 
processing frameworks.  These applications read input files, apply processing steps and write output 
files. (This statement holds even for event generators like Pythia, if one considers its large number of 
parameter settings as input data.) While experiments differ in the complexity of their software triggers, 
most experiments require high level online triggering and monitoring.  The offline frameworks are 
reused online to easily move algorithms for selection and monitoring from the offline environment in 
which they are developed into the real-time context of data taking.  The component nature of these 
frameworks allows online input and output to be specialized for that purpose, without the users having 
to  be  expert  in  their  experiment’s  DAQ systems.   Most  end  user  analysis  in  HEP is  done  with 
ROOT[5].  However it is often the case that after the primary reconstruction, the resulting datasets are 
too large and unwieldy for any end user analysis tool.  Experiment event processing frameworks are 
used to reduce the reconstruction datasets by means of: 1. reducing the number of events in a sample 
by applying event  selection criteria,  2.  reducing the  size  of  collections  within  selected events  by 
applying threshold cuts to the objects within a collection, for example in a TrackCollection you could 
require each track saved to have a pT above some value, 3. reducing the size of the objects within a 
collection, by restricting their information content to be only what is required for most analysis.  The 
information set required for downstream reconstruction components is often much larger then what is 
required for end user analysis.  Experiment event processing frameworks provide the tools necessary 
to  carry  out  this  reduction  with  the  components  described  in  the  previous  paragraph  so  that  the 
resulting datasets are manageable and ready for user’s physics analysis.

4. Is Wider Field-Wide Collaboration Possible?

The basics of event processing frameworks enumerated in section 3 have not changed much in the past 
decade.  This can be seen from the talk I gave at the 2006 CHEP in India[4]. Note that nothing listed 
above is really specific to any one frontier or domain.  

It is very important to be wary of implementation details masquerading as requirements, there 
are many ways of supporting a diversity of requirements within an existing framework. For example 
some may claim that a streaming detector is different because it doesn’t have the concept of an event.  
However  DayaBay  uses  Gaudi.   DayaBay  is  a  small  experiment  whose  detector  operates  in  a 
streaming mode.  They adapted Gaudi, which was designed as an event processing framework, for all 
of the reasons that are listed in reference[3].  

The solution space for the components of event processing frameworks, is not that large, for 
instance in the area of persistency, most use ROOT I/O, in the area of configuration, most use python 
(including the very popular pyROOT interface to ROOT).  In 2006 the diversity of solutions was 
much  larger.   Now  is  the  time  to  take  advantage  of  this  convergence  within  the  field.   The 
communication tools for collaboration are much better.  Most of us use Indico for meeting agendas, 
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and  are  very  familiar  with  remote  participation  tools  like  ReadyTalk  or  Vidyo.   Code  sharing 
repository tools have been greatly improved by developers outside of HEP, and we are seeing a wide 
adoption of git, which has much better support for distributed development.  The movement within the 
field to form a HEP software foundation is gaining traction, and has support from the experiments as 
well as the funding agencies.  All of  these drivers lead me to conclude that the answer to the question 
in the title of this paragraph is yes.  Whether that collaboration is like the CDF-BaBar collaboration 
described in 2.1, where code is shared, or more like the Cleo-CDF/BaBar collaboration, where ideas 
and designs are shared, remains to be seen.

5. Conclusions and Outlook

Putting  it  all  together  there  is  a  lot  of  motivation  for  wider  collaboration  on  event  processing 
frameworks within the field of HEP.   The challenge of the coming paradigm shift to parallel execution 
of algorithms is large and it will require an expertise that few within the field possess.  In the previous 
shift from Fortran to C++, many of the more senior contributors to experiment software did not make 
the transition to the new language and were therefore left behind.  The need for a concurrent event 
processing framework, which can shield algorithm writers from the complexities of multi-threaded 
programming  by  devising  simple  rules  to  follow  (like  don’t  use  non-const  global  statics)  and 
minimizing what they need to know, is large, and required in order to not lose another large group of 
scientist-programmers.  With the advent of the need for multi-threaded event processing frameworks, 
we should exploit all the expertise available in our experiments, and outside of them, to meet these 
challenges.  There are overheads in wide collaborations but we gain more by collaboration in the long 
run than it costs initially.  If successful the building of communities and shared experience as seen in 
the intensity frontier and GSI/Fair can be extended to the whole community.  At CHEP2015 CMS and 
ATLAS core software groups arranged for a first meeting to discuss our multi-threaded frameworks.  
For the next CHEP, with the multi-threading frameworks planned to be well established, it will be 
interesting to see how much overlap and collaboration there is between HEP experiments for this 
technology transition.
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