21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

A study of dynamic data placement for ATLAS
distributed data management

T Beermann!®, G A Stewart? and P Maettig® on behalf of the
ATLAS Collaboration

1 CERN, Geneva, Switzerland
2 University of Glasgow, Glasgow, United Kingdom
3 University of Wuppertal, Wuppertal, Germany

E-mail: thomas.beermann@cern.ch

Abstract. This contribution presents a study on the applicability and usefulness of
dynamic data placement methods for data-intensive systems, such as ATLAS distributed data
management (DDM). In this system the jobs are sent to the data, therefore having a good
distribution of data is significant. Ways of forecasting workload patterns are examined which
then are used to redistribute data to achieve a better overall utilisation of computing resources
and to reduce waiting time for jobs before they can run on the grid. This method is based on a
tracer infrastructure that is able to monitor and store historical data accesses and which is used
to create popularity reports. These reports provide detailed summaries about data accesses in
the past, including information about the accessed files, the involved users and the sites. From
this past data it is possible to then make near-term forecasts for data popularity in the future.
This study evaluates simple prediction methods as well as more complex methods like neural
networks. Based on the outcome of the predictions a redistribution algorithm deletes unused
replicas and adds new replicas for potentially popular datasets. Finally, a grid simulator is used
to examine the effects of the redistribution. The simulator replays workload on different data
distributions while measuring the job waiting time and site usage. The study examines how
the average waiting time is affected by the amount of data that is moved, how it differs for the
various forecasting methods and how that compares to the optimal data distribution.

1. Introduction

The ATLAS [1] collaboration is one of the four major experiments at the Large Hadron Collider
at CERN. The detector, as well as the Monte Carlo simulations of physics events, create vast
amounts of data that are spread over the Worldwide LHC Computing Grid [2]. To be able
to manage this data Don Quijote 2 (DQ2)[3], the collaboration’s distributed data management
system, was developed and has run since before the detector started data taking in 2008. A new
data management system, called Rucio [4], has been under development and has taken over from
DQ2 at the end of 2014, to handle the new requirements for LHC Run 2. However, the data
used for the work presented in this article comes from DQ2, which was responsible for around
150PB of experiment data spread over 150 sites all over the world. The responsibilities of DQ2
included the organisation and management of primary detector and simulation data, but also all
of the derived physics data used by the collaboration’s physicists. The data is spread over the
grid according to the ATLAS Computing Model [5]. If users want to analyse this data they have

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

to send jobs to the workload management system (WMS), called PanDA [6], which schedules
the jobs at the sites where the data is available.

This contribution presents the results of a study that was conducted to examine the
performance of a dynamic data placement using dataset popularity forecasts based on historic
accesses. This study consists of three parts: The first part introduces a mechanism to analyse
the past data accesses to make forecasts of possible accesses in the near-term future. The next
part then shows how these predictions can be used to redistribute data on the grid, i.e., adding
and removing replicas accordingly. As it is very difficult to evaluate the benefits of such a
method in a live system, where exact workload patterns never repeat, the third part introduces
a simple grid simulator that is able to run the same workload on different data distributions. In
the final section the evaluation of different distributions is presented together with a conclusion
and a description of future work.

2. ATLAS Data Distribution

The data managed by the ATLAS DDM on the grid consists of files that contain physics events.
Those files are aggregated into logical datasets, which are the unit of operation in the DDM
system. It is possible to download single files from a dataset but it is only possible to move
whole datasets between sites. A set of actual files on a site that belong to a dataset is called a
replica. To create a new replica at a site all of the files of a dataset have to be copied to this
site.

The way that datasets are spread over the grid is based on policies defined by the Computing
Resource Management (CREM), which is guided by the ATLAS computing model and the
operational constraints. Based on the age and the type of a dataset the minimum number of
replicas is defined and where these replicas have to be stored (Tier-1 or Tier-2, disk or tape).
On top of that, there is the PD2P system [7], which triggers the creation of new replicas when
a threshold number of jobs is reached that request a particular dataset.

If a user wants to run a job on the grid it is done in multiple steps involving both the WMS
and DDM system. The user defines a job that will run on one or multiple datasets and sends it
to the WMS. The WMS asks the DDM system on which sites replicas of the requested datasets
are hosted. In the next step the WMS schedules where the jobs will run based on the sites’
availability, the current workload of the sites and the job priority.

Every time a file is accessed through PanDA a trace will be sent to the DDM tracer system.
The trace contains information about the corresponding dataset, the involved site, the user, the
starting and ending time and whether the access was successful or not. One application of this
information is the analysis of dataset popularity. Since the system was introduced in 2008 it has
already collected more than 7 billion traces, which makes it impractical to use directly. That is
the reason for the development of the popularity system [8]. The popularity system aggregates
the data from tracer system on a daily basis and provides data that is more tractable.

3. Popularity Prediction
The first step towards a better data distribution is a knowledge of future data popularity. This
leads to a need for a prediction of future dataset accesses, which is described in this section.

3.1. General Concept

The idea is to take the past number of accesses to datasets on the grid and make a forecast for
the near-term future. The number of accesses as recorded by the popularity system are used
for this prediction. In principle these form a time-series prediction, i.e., based on the number
of accesses of the last n points in time (Aj2,.), a prediction for the number of accesses at
point n + 1 (Ap41) is calculated. In this study the interval between points is chosen to be one
week. This time frame gives a reasonable period for the deletion and transfers that are necessary

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

for the redistribution. There exists various methods for time-series predictions. For this study
a hybrid approach combining static and neural network prediction has been chosen. This is
described below, along with the reason for this approach, in detail below.

3.2. Prediction Methods

3.2.1. Static Prediction The static prediction is a very simple method. The underlying
assumption is the accesses will not change a lot from one week to another and therefore the
predicted accesses is the same as the last recorded access: A1 = Ap.

3.2.2. Neural Networks The neural network approach is a lot more sophisticated. Artificial
neural networks (ANN) have been proven to be a suitable solution to time series predictions,
e.g., they have been evaluated to be used to forecast the development of exchange rates [9],
which is one of the reasons why they are chosen for this study. As a general introduction, [10]
describes how to apply recurrent neural networks to predict time series.

In this case the ANNs are designed to have n input neurons and one output neuron. The
inputs for the ANN are the accesses for the last n weeks. The output is the predicted number
of accesses for week n 4+ 1. An example is shown in figure 1.

Figure 1. Neural Network Example

accesses last
weeks

hidden layer

prediction
next week

The general concept, as described above, has to be adapted for the actual implementation
to make better predictions. There are different types of datasets that are used on the grid and
depending on those types other user groups access the data which can result in separate access
patterns. To take advantage of this the input data is split based on these datatypes, so that
separate neural networks are trained for the different data types.

For the training of the neural networks the accesses data of the last n weeks is used. The
inputs for the training are the accesses for the weeks 1,2,...,n — 1 for each of the datasets. The
output is the number of accesses for week n. After the training the quality of the prediction is
evaluated by making predictions for the training data and then comparing the predicted accesses
to the actual accesses. If the error is below a certain threshold the trained networks are used
for the actual prediction. Here the data is now shifted and the inputs are the accesses for week
2,3, ...,n and the output is the predicted access for week n + 1.

3.2.83. Hybrid Prediction The input can have a considerable number of datasets that are used
very little or not at all. Those datasets only introduce noise to the neural networks and therefore
should not be included in the training. For this a pre-filtering stage is introduced. Before the
ANNSs are trained the input data is filtered based on total number of accesses in the last n weeks

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

and number of weeks without any accesses at all. If the dataset is unpopular based on this
criteria it will not be used with the neural network prediction but with the static prediction.
The neural network prediction then continues only with the popular data. In the end the results
of the static and neural network prediction are merged again to give the complete result set.
The whole process from the collection of input data to the predicted results is illustrated in
figure 2

Figure 2. The prediction workflow

S~

Tracer

U

| Popularity |

| Weekly Aggregation |

Al \ /4

Neural Network
Prediction

Static Prediction

T Vs

| Merge Results |

4. Data Redistribution

This section describes how the predicted accesses can be used to add and remove dataset replicas
to improve the data distribution. The data redistribution consists of two parts that have to work
hand in hand: The cleanup of space at sites and the creation of new replicas. The deletion process
has to know exactly how many bytes it has to delete and the creation of replicas has to fill up
the freed space as efficiently as possible.

4.1. Replica Creation

For the creation of datasets the redistribution algorithm has to rely on the results of the dataset
access prediction. The approach here is to use the access predictions to place replicas evenly
on the available computing resources. FEach site where replicas are hosted has a certain number
of computing slots to run jobs simultaneously. If all of these slots are occupied new incoming
jobs have to wait. By adding new replicas the number of job slots able to process a particular
dataset becomes bigger and the WMS has more options for where to put jobs; ideally this leads
to lower overall waiting times and better site utilisation.

The input metric for this approach to distribute the workload evenly is the number of
accumulated accesses per job slot per site. To get the numbers of accumulated accesses for
each site the numbers of predicted accesses for each replica of the site are summed up. As the
number of job slots differs for each site care must be taken that small sites get proportionally
fewer accesses than bigger sites. For that reason the accumulated accesses are normalised by
the number of job slots per site.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

4.2. Replica Deletion

Two things have to be considered when deleting replicas for the redistribution. First, there
should always be a minimum number of replicas available per dataset. The actual number
depends on the type of the dataset and is defined by CREM. These are typically two replicas
on disk for current data types and one replica for the rest. This is to make sure that no dataset
will be deleted completely by the redistribution and that data safety for precious data is assured
(data is continually lost at a low level on the grid due to storage system failures, so a single
replica is particularly vulnerable to accidental loss at a site). Second, only the number of replicas
for datasets that have been unpopular in the last weeks should be reduced.

4.8. Workflow
For the redistribution the following inputs are needed:

e Current Data Distribution: The data catalogue with the current dataset replica
distribution.

e Current Site Configuration: The configuration of the sites containing information about
the size of the site’s disks and the number of available job slots, i.e., the number of jobs
that can be run concurrently.

e Past Dataset Popularity: Aggregation of weekly accesses for datasets in the last weeks.
e Predicted Accesses: The predicted dataset accesses for the next week.

¢ Maximum Bytes: The maximum number of bytes the algorithm is allowed to use for
redistribution, i.e., it must not delete and add more than the given number of bytes.

The first step before the redistribution begins is to calculate the accumulated accesses for
the replicas that are already available. So for all sites a list of replicas is iterated and if a
replica is predicted to have accesses the number of accesses is added to the sum. After this, the
redistribution begins by iterating over all datasets from the prediction. The datasets are sorted
beginning with those with the most accesses. For each dataset a list of possible sites for a new
replica is created. This list is based on the ratio of accumulated accesses and the job slots with
the sites with lowest ratio first. All sites that already host a replica for this dataset are excluded.
In the next step the list of new sites is iterated and an attempt is made to place the new replica
at the first site. If not enough space is available for the new replica the deletion mechanism
is started and tries to delete replicas from the site until enough space is available. If it is not
possible to clean up enough space the algorithm continues with the next site. In the end, if
no site has enough space available no new replica will be added. If a replica has been added
the algorithm continues with the next dataset. This process continues either until replicas are
created for all predicted datasets or the maximum number of bytes is reached.

5. Grid Simulator

Testing and evaluating the impact of this redistribution algorithm on the waiting times and
computing resource utilisation of the real system is not trivial. In order to evaluate the benefits
of redistributing data the actual grid workload, extracted from the WMS, is replayed using a
grid workload simulator. To compare different data distributions the system has to run multiple
times with the same workload, i.e., it would have to be stopped after some time and set back
to the original state and start from there again. This would not be possible to do in the real
system, so a simplified grid simulator was developed for that purpose. The simulation can run
on a real workload extracted from the job history from the WMS and the data distribution from
DDM system and measure the waiting times and usage of job slots.

It simulates the following parts of the real system:

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

Figure 3. The simulation workflow

WMS | | DDM | | Site

1 I :
H 1]

add job ' ask for list of ' '

! replicas > ! '

1] I

1 I I

! list of replicas ! !

1 l] :

1 I

i ask for current jo:b slots / queue usage i

' ' P |

: each sites) current usage i

-~ : |

1]

1 I I
choose (! ! !
site 1 . | . l

! send job '(GIJ chosen site !

T T —p 1

e Sites: they provide different storage endpoints to save data and computing slots to send
jobs to this data.

e DDM system: This system keeps track of the location of replicas and it is used to add
and remove replicas to the system.

e WMS: This system brokers the jobs to the sites and uses the DDM and the Sites to find
a suitable place.

The workload is inserted into the simulation as separate jobs using one dataset for a predefined
amount of time. The WMS then tries to pick a site based on data locality from DDM and
available computing resources from the sites and sends the job there. Either there is a free job
slot at the site, and the job can start running right away, or it will have to wait in a queue
until another job finishes and a job slot is freed. When the job finished it saves the time it was
inserted into the system and the time when it actually started using the job slot. The difference
then gives the waiting time per job, which then can be used to calculate the average waiting
time for all jobs. Furthermore, the simulation also regularly saves the number of free and used
job slots on the sites, so that is possible to determine the slot utilisation. The whole workflow
can be seen in figure 3

6. Evaluation
In this section the results of the evaluation together with the parameters for the simulation are
described.

6.1. Setup
Below the most important parameters of the simulation are listed:

The simulations run over a total period of 13 weeks.

The evaluation of the waiting time is done per week. Three typical weeks have been picked,
simulating high, medium or low load on the system.

The workload is extracted from the DQ2 traces and the PanDA job history. Only analysis
jobs are simulated.

The number of job slots has been determined from WMS history for each week separately,
based on the maximum number of simultaneously running jobs.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing

Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002
Load Date Job Total Total DATADISK DATADISK|
Slots Replicas | Disk Space | Replicas Space
High 17.-24.02.2014 | 24205 | 526511 42.3 PB 210784 27.4 PB
Medium | 24.-31.03.2014 | 18177 | 534838 | 43 PB 211798 27.5 PB
Low 17.-24.03.2014 | 15274 | 535584 | 43 PB 211798 27.5 PB

Table 1. Simulation parameters for the three weeks

e The data distribution is extracted from DDM system and includes datasets of detector and
Monte Carlo data of the datatype that is used for user analysis.

e The original average waiting time was 18999s (~5:15h) for the high load week, 16656s
(~4:30h) for the medium and 7182s (~2h) for the low load week.

6.2. Results
27.5 5500
25 5000
22.5 4500
T 20 4000
g
£17.5 3500
£ <
E 15 3000
0125 2500
2 £
=10 = 2000
75 1500
5 1000
2.5 500
00 1000 2000 3000 4000 5000 6000 7000 8000 9000 100t 00 1000 2000 3000 4000 5000 6000 7000 8000 9000 100t
Turnover (PB) Turnover (PB)
+High Load ~Medium Load =Low Load «High Load ~Medium Load =Low Load
Figure 4. Figure showing the percentage Figure 5. Figure showing the difference in
of waiting time saved for different turnovers waiting time for different turnovers compared
compared to the original distribution to the original distribution

Figure 4 shows the waiting time benefit in percentage of the original waiting time. The overall
trend for all weeks shows that the more data is moved the bigger the benefit is. For two out of
three weeks this holds true until a certain point is reached when the benefit goes down again.
Something interesting happens for the medium load week. The waiting time is going up and
down again until it hits it maximum around 5PB, when it becomes constant.

The reason that benefit is going down again at some point is that the redistribution is deleting
data, which reduces replicas for some datasets, which have not been used for a period of time.
Initially, the chances are very low that this dataset will be accessed and, even if there are accesses
there are still replicas left. So the waiting time will not be negatively influenced at all or in the
worst case only a little bit. On the other hand the new replicas for the popular datasets mean
that jobs can be sent to sites which otherwise would have been idle because the lack of popular
data at that site. This will positively affect the waiting time. For the smaller turnovers this
leads to an overall reduced waiting time.

For the bigger turnovers the effect changes. Replicas are removed starting with the datasets
that have not been used for the longest time. At some turnover, here it is 5PB, the redistribution
will start deleting replicas, that might be used. Furthermore the added replicas cannot balance
that out anymore, leading to a rise of the average waiting time again.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032002 doi:10.1088/1742-6596/664/3/032002

The effect on the medium load week could be explained as follows: The prediction for this
week is not as good as for the other two weeks and does not get the order for the popular datasets
completely right. So it starts adding less popular datasets first and later it comes to the popular
ones. Together with the deletion, which probably deletes data that could be used, this behaviour
is the result. This indicates that there is still room for improvement of the prediction in future
developments.

7. Conclusion and Outlook

The results show that it is possible get a significant gain in user mean waiting times, even with
small amounts of data moved. The gain may vary for different weeks, but overall the results
show the same trends:

e It is possible to make forecasts of future data accesses that are usable to redistribute data
for better waiting times.

e The more data is moved the bigger the benefit until a turning point of around 5PB where
the benefit goes down again or stays constant.

e The maximum benefit for all weeks is between 18% and 26%, which, depending on the week,
can be up to an average of more than 70 minutes of waiting time saved per job.

This study used data that was extracted from the system used for Run 1. For Run 2 new
concepts and systems have been introduced, which include different datatypes and data life-
cycle models. The system introduced in this contribution has to be adapted and evaluated to
work with the new systems as well. Furthermore the results indicate that the prediction can be
improved. Therefore other time-series prediction algorithms will be evaluated.

[1] ATLAS Collaboration 2008 JINST 3 S08003

[2] Eck C, Knobloch J, Robertson L, Bird I, Bos K, Brook N, Diillmann D, Fisk I, Foster D, Gibbard B, Grandi
C, Grey F, Harvey J, Heiss A, Hemmer F, Jarp S, Jones R, Kelsey D, Lamanna M, Marten H, Mato-Vila
P, Ould-Saada F, Panzer-Steindel B, Perini L, Schutz Y, Schwickerath U, Shiers J and Wenaus T 2005
LHC computing Grid: Technical Design Report. Version 1.06 (20 Jun 2005) Technical Design Report LCG
(Geneva: CERN) URL http://cds.cern.ch/record/840543

[3] Branco M, Zaluska E, de Roure D, Lassnig M and Garonne V 2009 Concurrency and Compu-
tation: Practice and Experience 22 ISSN 15320626 URL http://dx.doi.org/10.1002/cpe.v22:11
http://doi.wiley.com/10.1002/cpe. 1489

[4] Garonne V, Stewart G A, Lassnig M, Molfetas A, Barisits M, Beermann T, Nairz A, Goossens L, Barreiro
Megino F, Serfon C, Oleynik D and Petrosyan A 2012 Journal of Physics: Conference Series 396 032045
ISSN 1742-6588 URL http://stacks.iop.org/1742-6596/396/1i=3/a=032045

[5] Jones R and Barberis D 2008 Journal of Physics: Conference Series 119 072020 ISSN 1742-6596 URL
http://stacks.iop.org/1742-6596/119/i=7/a=072020

[6] Maeno T, De K, Wenaus T, Nilsson P, Stewart G A, Walker R, Stradling A, Caballero J, Potekhin
M and Smith D 2011 Journal of Physics: Conference Series 331 072024 ISSN 1742-6596 URL
http://stacks.iop.org/1742-6596/331/i=7/a=072024

[7] Maeno T, De K and Panitkin S 2012 Journal of Physics: Conference Series 396 032070 ISSN 1742-6588
URL http://stacks.iop.org/1742-6596/396/1=3/a=032070

[8] Molfetas A, Lassnig M, Garonne V, Stewart G, Barisits M, Beermann T and Dim-
itrov. G 2012 Journal of Physics: Conference Series 396 052055 ISSN 1742-6588 URL
http://stacks.iop.org/1742-6596/396/i=5/a=052055

[9] Refenes A N, Azema-Barac M E, Chen L and Karoussos S A 1993 Neural Computing Applications 1 46-58
ISSN 09410643 URL http://www.springerlink.com/index/G810W7118916R733. pdf

[10] Connor J T, Martin R D and Atlas L E 1994 [EEE transactions on neural networks

/ a publication of the IEEE Neural Networks Council 5 240-54 ISSN 1045-9227 URL
http://www.ncbi.nlm.nih.gov/pubmed/18267794

