
Managing virtual machines with Vac and Vcycle

A. McNab1, P. Love2, and E. MacMahon3

1 School of Physics and Astronomy, University of Manchester, UK
2 Department of Physics, Lancaster University, UK
3 Department of Physics, University of Oxford, UK

E-mail: andrew.mcnab@cern.ch

Abstract. We compare the Vac and Vcycle virtual machine lifecycle managers and our
experiences in providing production job execution services for ATLAS, CMS, LHCb, and the
GridPP VO at sites in the UK, France and at CERN. In both the Vac and Vcycle systems, the
virtual machines are created outside of the experiment’s job submission and pilot framework.
In the case of Vac, a daemon runs on each physical host which manages a pool of virtual
machines on that host, and a peer-to-peer UDP protocol is used to achieve the desired target
shares between experiments across the site. In the case of Vcycle, a daemon manages a pool
of virtual machines on an Infrastructure-as-a-Service cloud system such as OpenStack, and has
within itself enough information to create the types of virtual machines to achieve the desired
target shares. Both systems allow unused shares for one experiment to temporarily taken up
by other experiements with work to be done. The virtual machine lifecycle is managed with
a minimum of information, gathered from the virtual machine creation mechanism (such as
libvirt or OpenStack) and using the proposed Machine/Job Features API from WLCG. We
demonstrate that the same virtual machine designs can be used to run production jobs on Vac
and Vcycle/OpenStack sites for ATLAS, CMS, LHCb, and GridPP, and that these technologies
allow sites to be operated in a reliable and robust way.

1. Introduction
A previous paper[1] in 2014 presented the Vacuum model and Vac as its first implementation:

The Vacuum model can be defined as a scenario in which virtual machines are created
and contextualized for experiments by the resource provider. The contextualization
procedures are supplied in advance by the experiments and launch clients within the
virtual machines to obtain work from the experiments’ central queue of tasks.

In this paper we describe further developments to Vac, and the introduction of Vcycle,
which implements the vacuum model for Infrastructure-as-a-Service (IaaS) cloud systems such
as OpenStack[2].

2. Pilot VM model
Both Vac and Vcycle implementations are designed to manage VMs that have a well-defined
lifecycle, in particular, that the VM itself shuts itself down if it has no work to do. Beyond this
there are no requirements on the behaviour of the VMs but they have the option of providing
information about why they finished or confirmation that they are still running correctly.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



The Pilot VM model implicitly assumes that a series of identical VMs can be created for the
experiment and that each of them will discover what portion of work they should carry out, or
stop if none is avaiable. The model was developed by analogy with pilot jobs at conventional
grid sites fetching payload jobs from a central task queue. However, Vac and Vcycle can equally
well manage VMs with a different internal model, such as the client of an experiment’s event
server, a local batch queue worker node, or even a parallel analysis worker for a system like
PROOF[3].

The outcome of the VM can be reported as a “shutdown message”. The message consists
of a three digit code followed by human readable text, in a similar way to status messages in
internet protocols such as HTTP[4] and SMTP[5]. The values are listed in Table 1. This scheme
provides room to insert more numbers for finer-grained information in the future.

Table 1. Shutdown codes and messages

100 Shutdown as requested by the VM’s host/hypervisor
200 Intended work completed ok
300 No more work available from task queue
400 Site/host/VM is currently banned/disabled from receiving more work
500 Problem detected with environment/VM provided by the site
600 Grid-wide problem with job agent or application within VM
700 Transient problem with job agent or application within VM

Vac and Vcycle treat messages in the range 300 to 699 as aborts which are more significant
than transient problems. If the VM does not supply a shutdown message, then aborts are
identified by comparing the duration of the VM to the parameter fizzle seconds. If a class
of VM, referred to in the Vac and Vcycle configurations as a “vmtype”, has a VM instance
which aborts, then creation of more instances of that vmtype is blocked for the duration of its
parameter backoff seconds. This backoff algorithm is applied to all of the VM slots which are
managed together as a “space”, corresponding to a Compute Element and batch system in a
conventional grid site.

Shutdown messages are communicated via the machineoutputs extension to the WLCG
Machine/Job Features mechanism described below. This mechanism can also be used to
communicate a heartbeat signal to the VM lifecycle manager by updating the modification
time of a nominated heartbeat file in the Vac or Vcycle configuration. It is possible to nominate
a log file which is updated frequently in the normal operation of the VM, or to update a special-
purpose heartbeat file.

3. Vac motivation and implementation
Vac was developed in parallel with the Vacuum model[1] itself and the LHCb Pilot VM
architecture described recently[6]. Vac creates VMs on behalf of the resource provider directly
on the hypervisor machine or “factory” on which it runs, using the libvirt toolkit[7]. The Vac
daemon acts as an autonomous agent, taking decisions about which VMs to create and possibly
stop based on their observed behaviour, information gathered from other Vac factory machines
within the same space, and the configuration files created by the resource provider. This design
aims for maximum robustness, as individual factories can continue to create VMs even if their
peers fail or the mechanism by which configurations are updated fails.

The Vac configuration file scheme has been designed with manual and automated modes
in mind, such as Puppet[8]. Files ending in .conf in /etc/vac.d are read in alphanumeric

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

2



Figure 1. The Vacuum model as implemented by Vac

order followed by the file /etc/vac.conf . All these files are merged with more recent values
overriding any present in earlier files. This allows fragments of configuration file to be installed
and assembled by Vac at the start of each cycle to enable per site, per space, and per machine
configuration file fragments to be combined. This design aims to avoid the need to build a
complete monolithic configuration file for Vac, with a preprocessor or a system like Puppet’s
Hiera.

The Vac daemon gathers information and takes actions in cycles which occur approximately
once per minute. At the start of each cycle, the configuration files are reread, the running
VMs are examined using the libvirt API, and if new VMs are to be created, other Vac factories
are interrogated using the VacQuery UDP protocol. Some state information about the VMs,
such as their vmtype, cannot be discovered from libvirt and is saved as files, from where it
is rebuilt at the start of each cycle. This design removes any need to restart Vac daemons if
configuration files are updated, and ensures that Vac recovers form failures at the level of the
VMs or the virtualization layer on the factory. The Vac software can typically be updated
between compatible versions without disrupting running VMs, and this is extremely convenient
when apply bug or security fixes.

To handle VacQuery UDP messages, the Vac daemon spawns a Vac Responder process from
the main Vac Factory process. The protocol involves the factories sending queries to UDP port
995 in the form of JSON[9] structures. Replies are made by the responder to the sender on
its chosen port again in the form of a JSON structure, with information about which VMs
are running for which vmtypes, and when each vmtype last experienced a VM abort and why.
Each factory is given a list of all the factories in the space as part of its configuration and
factories which fail to respond are assumed to have failed. Packet loss or delays may result in
less accurate decisions in sharing capacity across the space, but since the bulk of the decision
making is done within each factory using information obtained directly from the VMs and libvirt,

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

3



the possibilities for these problems to have a significant effect on the operation of running VMs
are minimised.

It is important to note that the VacQuery UDP mechanism is only used when deciding what
type of VM to create, and so relatively few of these queries are needed over the course of a
day. On a factory running 24 VMs each lasting 24 hours, a set of VacQuery requests would
be sent only once an hour on average. In a space with 360 such factories (and so 8640 VMs),
a responder service would only have have to deal with a UDP packet every 10 seconds. Since
the Vac spaces are defined by configuration rather than by association of worker nodes with a
headnode or gateway machine, then the number of factories communicating with each other in
each space can readily be adjusted.

Through libvirt and its dnsmasq daemon, Vac provides DHCP and DNS services to the
VMs which are created on a private NAT network within each factory in the IP address range
169.254.169.0 - 169.254.169.253. On this network, the factory appears at 169.254.169.254 which
is the so-called Magic IP in IaaS frameworks such as OpenStack at which an HTTP metadata
service is often provided. It is possible for the resource provider to provide IaaS-like services at
this IP address, and it is envisaged this mode will be supported by Vac itself in the future.

Vac supplies the WLCG Machine/Job Features[10] (MJF) directories to the VMs using an
internal NFS server on each factory, and currently requires that VM contextualizations which
wish to use MJF check for the availibility of these NFS directories. In addition, Vac provides a
machineoutputs directory on the same NFS server which the VM can write log files, heartbeat
files, and shutdown messages to. The contents of this directory are automatically saved on the
factory for debugging purposes when each VM finishes.

Vac also configures a Virtual Network Console (VNC) for each VM on the local 127.0.0.1
address, and this allows the resource provider to run a VNC client on the factory and see the
console messages.

Finally, Vac can provide the VM with access to a fast logical partition for use with virtio[11]
paravirtual disk interfaces, typically mounted at /scratch within the VM. Vac creates and
manages these logical partitions within a nominated disk volume group.

4. Vcycle motivation and implementation
Following the successful deployment of Vac for production LHCb and ATLAS workloads, the
Vacuum model was applied to virtual machines managed by IaaS systems such as OpenStack
and the APIs they expose, rather than libvirt on the host itself. The resulting daemon, Vcycle,
shares much of the design, configuration, and code used by Vac and uses the same Pilot VM
API with a few necessary modifications for the IaaS environment.

As with Vac, no communication is needed between the experiment and the Vcycle instance
and all decisions are based on the observed behaviour of the Pilot VMs which in turn handle
all communication with the experiment’s workload management system. Figure 2 shows the
resulting architecture, where the Vcycle daemon can be placed within the site, within the central
infrastructure of the experiment, or at a third party site which has access to the IaaS service.
Since Vcycle is experiment-neutral and the relative shares of different experiments are given
in the Vcycle configuration, this flexibility allows the resources to be managed in a way which
reflects funding and policy decisions associated with those resources. Furthermore, each Vcycle
instance can managed VMs in one or more spaces associated with tenancies or accounts at more
than one remote IaaS service.

For example, a High Energy Physics laboratory might run Vcycle to manage some of the
capacity of its own cloud infrastructure for the set of experiments it supports; a university HEP
group might run Vcycle to manage capacity it has been allocated on a cloud facility operated
with the university’s IT services department; an experiment might run several Vcycle instances
to manage resources at national cloud services which have no associated HEP staff; and a

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

4



Figure 2. The Vacuum model as implemented by Vcycle

national infrastructure might run a central Vcycle instance to manage cloud resources at sites
without requiring them to run HEP-specific services themselves.

As with Vac, Vcycle provides VMs with the Machine/Job Features[10] directories and a
writeable machineoutputs directory for log files, heartbeat files and shutdown messages. In
Vcycle’s case, these directories are provided by HTTPS from an Apache[12] server on the
same machine as the Vcycle daemon. The URLs of these directories are declared using the
machinefeatures, jobfeatures, and machineoutputs metadata keys avaiable to the VMs.

Vcycle has been designed to be extensible with Python plugins, with OpenStack support
provided by a plugin supplied with Vcycle. This plugin uses the OpenStack REST API directly
without an intermediate library, and this implementation was the result of a rewrite of Vcycle
after first using the Python Nova library. We observed that the REST and Nova Library APIs
were of similar complexity and direct use of the REST API removed a dependency. This is
largely due to the clean way in which the OpenStack developers have designed their REST API.

Other plugins are planned for integration into the Vcycle distribution, including an OCCI[13]
plugin which has been contributed by Luis Villazon Esteban at CERN.

5. user data templates
To create a virtual machine for an experiment, both Vac and Vcycle start the VM using the
boot disk image and then supply the VM with a user data contextualization file consisting of
options and a short shell script. These files can either be loaded from a nominated filesystem
location or from an HTTP(S) URL. Typically, the file is supplied by the experiment from a
webserver they control, in the form of a template text file. However, any form of user data file
can be used, provided it is compatible with the boot image chosen by the experiment.

Vac and Vcycle apply a series of default substitutions to a user data template file giving the
space name, the vmtype, the hostname of the VM, the Vac or Vcycle version and its hostname.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

5



For example, any instance of the text “##user data space##” is replaced by the space name.
In addition, the resource provider can follow instructions from the experiment

to define additional custom substitutions, all prefixed with “##user data option ” or
“##user data file ” to be replaced with a string contained in the configuration file or the entire
contents of the nominated file respectively. The substitutions “##user data proxy cert##” and
“##user data proxy key##” cause the files they reference to be read as an X.509 certificate
and key from which a GSI legacy or RFC proxy[14] is produced and inserted into the final
user data file.

This example shows the entire ATLAS configuration used in production on the Vac-based
site at the University of Manchester:

[vmtype atlasprod]
vm_model = cernvm3
root_image = https://www.gridpp.ac.uk/vac/atlas/cernvm3.iso
root_public_key = /root/.ssh/id_rsa.pub
backoff_seconds = 600
fizzle_seconds = 600
heartbeat_file = vm-heartbeat
heartbeat_seconds = 600
max_wallclock_seconds = 172800
log_machineoutputs = True
accounting_fqan = /atlas/Role=NULL/Capability=NULL
user_data = https://www.gridpp.ac.uk/vac/atlas/user_data
user_data_option_queue = UKI-NORTHGRID-MAN-HEP_VAC
user_data_option_cvmfs_proxy = http://squid-cache.tier2.hep.manchester.ac.uk:3128
user_data_file_hostcert = hostcert.pem
user_data_file_hostkey = hostkey.pem
user_data_option_default_se = bohr3226.tier2.hep.manchester.ac.uk

Some of the settings, such as the URL of the Squid caching proxy used by CernVM-FS[15],
are provided by the site. The URLs of the root image and user data file are provided centrally
for all sites.

6. Boot image handling
The root image setting given to Vac or Vcycle is the filename or URL of a boot image which is
supplied to the VM as it starts. When using uCernVM[16] boot images which are around 20MB
in size, the image can be conveniently supplied to sites from the same webserver the experiment
uses to provide the user date templates. As the update time of the file is checked each time a
VM is created using the HTTP If-Modified-Since header, the experiment can update the image
centrally and have it picked up immediately for all new VMs by all Vac and Vcycle instances.

For both implementations the boot images are cached on local disk, with modification time
set to that of the remote URL to avoid race conditions due to system clock problems. Vac
can pass the cached file directly to libvirt when creating VMs. The Vcycle OpenStack plugin
manages uploading new images to OpenStack’s image management services.

7. Target shares
Both Vac and Vcycle apply target shares specified by the resource provider in their configuration.
Shares are applied at the level of vmtypes within the space. When a VM slot needs to be filled,
the target shares are compared with the number of starting or running VMs and a VM is created
for the vmtype which is most below its share, taking the backoff algorithm into account. For
Vac, the VacQuery UDP protocol is used to gather information about what is happening across

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

6



the space. For Vcycle, a complete picture of what is happening is obtained from the IaaS
infrastructure such as OpenStack.

Figure 3 shows the target shares mechanism in action on the Manchester Vac site, with
varying demand for VMs from ATLAS and LHCb over a one-week period.

Figure 3. ATLAS (top) and LHCb (bottom) VMs at the Manchester Vac site, showing the
target shares mechanism dealing with varying demand. The period around day 28 is with
demand from both experiments and the target share ratio of 2:1 being achieved.

8. APEL accounting
As each VM finishes, both Vac and Vcycle record accounting information in the format of APEL
SSM[17] messages in the directories apel-outgoing and apel-archive. APEL’s ssmsend tool can
then be used to send the copy created in apel-outgoing to the central APEL service, with the
copy being deleted on successful receipt of the message. At the time of writing, this system has
been in production at the Manchester and Oxford Vac sites for several months.

9. Deployment at sites
Vac and Vcycle have been deployed and used to run production workloads at the sites listed in
Table 2. The Manchester (320 VMs) and CERN (540 VMs) sites are the largest deployments
managed by Vac and Vcycle respectively.

The OpenStack-based capacity at CERN and CC-IN2P3 is managed by a Vcycle instance
running on one of the LHCb central “VO Box” machines at CERN. The OpenStack capacity
at Imperial College, London is managed by the GridPP Vcycle instance at the University of
Manchester.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

7



Table 2. LHCb use of VM-enabled sites

CERN Vcycle & OpenStack
CC-IN2P3 Vcycle & OpenStack
Imperial College Vcycle & OpenStack
Birmingham Vac
Lancaster Vac
Manchester Vac
Oxford Vac
University College Vac

10. Vacuum model implementations
The Vacuum model has also been implemented by the HTCondor Vacuum system[18], in which
HTCondor is used to produce VMs and similar target share and backoff procedures are used. The
same Pilot VMs with the same user data templates can be used for all three implementations.

11. Conclusion
We have presented a description of the Vac and Vcycle virtual machine lifecycle managers,
which are providing VMs for ATLAS, CMS, LHCb, and the GridPP DIRAC service, in which
production jobs are being run at 8 sites. We have explained that these VMs have been used in
production for the past year.

References
[1] A. McNab et al 2014 J. Phys.: Conf. Ser. 513 032065
[2] http://www.openstack.org/
[3] M. Ballintijn et al 2003 “The PROOF Distributed Parallel Analysis Framework based on ROOT” CHEP 2003

Proceedings arXiv:physics/0306110
[4] T. Berners-Lee et al, RFC2616 “Hypertext Transfer Protocol - HTTP/1.1” (Internet Engineering Task Force)

Section 10
[5] J. Postel, RFC 821 “Simple Mail Transfer Protocol” (Internet Engineering Task Force) Section 4.2
[6] A.McNab et al 2015, “LHCB experience with running jobs in virtual machines”, presented at the CHEP 2015

conference
[7] http://libvirt.org/
[8] Puppet from PuppetLabs, http://puppetlabs.com/
[9] T. Bray, RFC7159 “The JavaScript Object Notation (JSON) Data Interchange Format” (Internet Engineering

Task Force)
[10] https://twiki.cern.ch/twiki/bin/view/LCG/WMTEGEnvironmentVariables
[11] The Virtio toolkit, http://www.linux-kvm.org/page/Virtio
[12] The Apache Webserver Project, http://httpd.apache.org/
[13] R. Nyren et al, GFD-P-R.183 “The OCCI Core Specification” (Open Grid Forum)
[14] S. Tuecke et al, RFC3820 “Internet X.509 Public Key Infrastructure Proxy Certificate Profile” (Internet

Engineering Task Force)
[15] J. Blomer et al. 2012 J. Phys.: Conf. Ser. 396 052013
[16] J. Blomer et al. 2014 J. Phys.: Conf. Ser. 513 032007
[17] APEL Secure Stomp Messenger, https://wiki.egi.eu/wiki/APEL/SSM
[18] A. Lahiff 2015, “Implementation of the vacuum model using HTCondor”, presented at the CHEP 2015

conference

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022031 doi:10.1088/1742-6596/664/2/022031

8


