
Identity federation in OpenStack - an introduction to

hybrid clouds

Marek Denis, Jose Castro Leon, Emmanuel Ormancey, Paolo Tedesco

CERN, Geneva, Switzerland

E-mail: {marek.denis, jose.castro.leon, emmanuel.ormancey, paolo.tedesco}@cern.ch

Abstract. We are evaluating cloud identity federation available in the OpenStack ecosystem
that allows for on premise bursting into remote clouds with use of local identities (i.e. domain
accounts). Further enhancements to identity federation are a clear way to hybrid cloud
architectures - virtualized infrastructures layered across independent private and public clouds.

1. The Introduction
The National Institute of Standards and Technology [1] defines cloud computing [2] as:

Definition 1 (...) model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction.

Over the past few years cloud computing has been gaining huge momentum. Business model,
1 where users pay only for the resources they used, allows for more flexible and cost effective
managing of computing infrastructure. Instead of building and maintaining expensive data
centers, many vendors and organizations prefer to utilize a cloud provider’s infrastructure and
pay only for the resources they use. At the same time, organizations that maintain their own data
centers often choose private cloud solutions as this helps them to provide better services to their
end users. Infrastructures relying on cloud computing models usually result in better hardware
utilization (multiple virtual machines can run within one bare-metal hypervisor), better resource
isolation as well as faster and fully automatized service orchestration. Users can provision new
virtual machines by placing a request in the cloud scheduler, instead of issuing a ticket in the
ticketing system and waiting for administrators to prepare a bare-metal machine. Automatic
provisioning of virtualized resources can usually be finished within minutes. What is more,
requesting many virtual machines takes similar amount of time as cloud schedulers distribute
requests across multiple hypervisors and the requests are processed in paralell. OpenStack [3] is
the most popular open source platform for managing and maintaining cloud infrastructures. It
is actively developed by wide community backed by developers working in both academic and
commercial areas.

1 often referenced as ”pay as you go” model

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



1.1. Cloud computing models
There are three main deployments models outlined by NIST. These are:

Private cloud - the cloud infrastructure is provisioned for exclusive use by a single organization
comprising multiple consumers (e.g., business units). It may be owned, managed, and
operated by the organization, a third party, or some combination of them, and it may exist
on or off premises.

Community cloud - the cloud infrastructure is provisioned for exclusive use by a specific
community of consumers from organizations that have shared concerns (e.g., mission,
security requirements, policy, and compliance considerations). It may be owned, managed,
and operated by one or more of the organizations in the community, a third party, or some
combination of them, and it may exist on or off premises.

Public cloud - the cloud infrastructure is provisioned for open use by the general public. It may
be owned, managed, and operated by a business, academic, or government organization, or
some combination of them. It exists on the premises of the cloud provider.

Hybrid cloud - the cloud infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities, but are bound
together by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between clouds).

The hybrid model provides greater flexibility than its private or public counterparts. It can
help building even more cost effective architectures and provide seamless multi-cloud experience.
The model introduces another software layer that spans across multiple independent, separately
governed cloud deployments. Hybrid architectures allows distinct sites to create collaborations
with an easy access to the shared resources. It also allows to build deployments with different
Service Level Agreement (SLA) requirements - resources with higher priorities are provisioned in
the cloud deployments providing better latency, bandwidth and more reliable service, whereas
less prioritized resources are located in clouds offering less strict requirements. OpenStack and
its identity federation implementation - OS-FEDERATION - are the first attempts to provide
mechanisms for deploying hybrid infrastructures.

2. OpenStack - Infrastructure as a Service
OpenStack is a free and open source cloud computing software platform. Its primary goal
is to provide service in the Infrastructure-as-a-Service (IaaS) model. OpenStack consists of
interrelated projects that control pools of processing, storage and networking resources through
a data center. Users interact with the services via RESTful APIs which help in adding automated
clients operating on text protocols. For better user experience one of the subprojects provides
web access built on top of OpenStack APIs. Typical OpenStack installation consists of the
following components:

Identity Service (keystone) - provisions users, groups, roles, projects, domains,

Compute (nova) - schedules Virtual Machines, manages their lifecycle,

Image Service (glance) - provides data assets (Virtual Machine images, Heat templates),

Networking Service (neutron) - provides software defined networks,

Object Storage Service (swift) - provides scalable and persistent object store,

Block Storage Service (cinder) - provides persistent block-level storage,

Orchestration Service (heat) - orchestrator with autoscaling functionalities,

Metering Service (ceilometer) - collects metering probes from other services,

Dashboard (horizon) - provides web based interface for other services.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

2



Figure 1. OpenStack Architecture

3. OpenStack keystone
Keystone is a service responsible for service discovery, provisioning users, groups, roles, projects,
domains as well as user authentication and authorization. OpenStack implements Role Based
Access Control (RBAC). Users and groups are granted roles (member, admin) which had also
been previously assigned to projects or domains.

In a standard configuration users must be provisioned in the Identity Service (keystone).
Internally, all persistent metadata is locally stored in the database. Whenever an OpenStack
user is added, modified or deleted, an administrator must request a change via the Identity API.
Authentication and authorization in OpenStack rely on tokens2. Whenever a user interacts with
a service in the OpenStack deployment, he is required to possess the token as an instance of his
identity and assigned roles. User may ask for unscoped token, however it will not be usable in
a typical daily operations like creating a virtual machine or uploading a virtual machine image.
When the user requests a scoped token (or scopes unscoped token) keystone checks whether
user’s role assignments allow for accessing requested project or domain. Tokens are structured as
JSON objects and include parameters like: user identification (id, name), authentication method,
expiration date, service catalog, and project/domain to which the token is scoped. Keystone is
also a major actor in the federated authentication and authorization workflow in OpenStack.

4. Identity federation
Identity federation is a secure and easy way to split authentication and authorization. A
centralized service, identity provider, is responsible for authenticating user, whereas multiple
trusted service providers are providing services, authorizing (already authenticated) users to
access resources, assets or request actions. Gartner [4] depicts identity federation in the following
way:

2 OpenStack Kilo release provides 3 types of tokens: UUID, PKI and Fernet, however the differences are beyond
the scope of this paper.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

3



Definition 2 Federated identity management enables identity information to be developed and
shared among several entities and across trust domains. Tools and standards permit identity
attributes to be transferred from one trusted identifying and authenticating entity to another for
authentication, authorization and other purposes, thus providing single sign-on convenience and
efficiencies to identified individuals, identity providers and relying parties.

where main actors in the architecture are:

Service Provider - a system entity providing services to other system entities.

Identity Provider - a provider that creates, maintains and manages identity information for
principals and provides authentication to other service providers within a federation.

Identity federation allows for designing and implementing distributed architectures where
user identities are stored centrally in well known endpoints (identity providers). Trusted
services (service providers) aim to provide service without reimplementing authentication
mechanisms and having to handle security related risks. With identity federation enabled,
service administrators can delegate authentication responsibilities to identity providers. The
gain is easily visible for both parties - end users as well as staff responsible for maintaining
services. Identity federation used in cloud computing is also extremely profitable for quick, on
premise bursting into remote clouds. Instead of creating, maintaining and later deleting accounts
at the remote site, two peers can configure a federated trust and a fraction of users will be able
to immediately access those remote resources with their local accounts.

4.1. Federation Protocols
Identity federation requires a secure and reliable transport layer used to exchange information
between trusted peers. There are few established protocols defining format of the data, as well
as order of the commands and interactions between the peers. The most widely used federated
protocols are:

SAML - Security Assertion Markup Language[5] is a format for exchanging authentication
and authorization data between parties, in particular, between an identity provider and a
service provider. It is open-standard format, based on XML. SAML was created by OASIS.
Specifications recommend using TLS for transport layer security and XML signing and
encrypting for message level. SAML provides various workflows (called profiles), out of
which the Web Single-Sign-On (WebSSO) is the most popular. Pure HTTP clients must
rely on Enhanced Client or Proxy (ECP) [7] profile which wraps XML data format with
SOAP headers.

OpenID Connect - an authentication standard[6] based on oAuth2.0 [8]. OpenID Connect
uses JSON for data format and specifies a RESTful API. The protocol specification is
maintained and developed by the OpenID Foundation.

An example of standard federated workflow (with SAML2 protocol as a transport layer) is
presented in figure 2:

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

4



Figure 2. Federated authentication workflow

5. OS-FEDERATION in OpenStack
Identity federation3 is supported since OpenStack Icehouse (released in April 2014). In this
setup keystone acts as a service provider, issuing federated tokens, later used like standard
OpenStack tokens. Federated tokens need to store information about the identity provider that
authenticated user as well as federated protocol that was used in the information exchange
process between trusted peers. Prior to successful federated authentication a number of
configuration steps must be executed. Adding following entities via the Identity API is one
of them:

• Identity provider - trusted identity provider (or identity providers),

• Protocol - federation protocol used,

• Mapping - set of rules used for translating assertions into local parameters (groups, user
names)

Both Identity Provider and Protocol entities are identified by unique user provided identifiers.
User who wishes to authenticate with use of OS-FEDERATION indicates identity provider and
protocol of his choice by specifying them in the authentication URL -
https://identity/v3/OS-FEDERATION/identity providers/{idp name}/protocols/{protocol}/auth.
A simplified database diagram with relations between the entities is presented in figure 3.

3 OpenStack implementation is named OS-FEDERATION

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

5



Figure 3. OS-FEDERATION simplified database schema

5.1. Mapping Engine
One of the main design decisions in identity federation in OpenStack is that users authenticating
with the federated workflow are ephemeral. That is, the user record does not exist in keystone’s
database and no such record is created once the user has authenticated. With such decision,
keystone must be able to assign roles dynamically and for that purpose a Mapping Engine was
designed and implemented in keystone. Its aim is to translate assertion parameters into set of
OpenStack specific parameters - local groups and user id. Each mapping rule is defined per
{identity provider, protocol} tuple. Basing on external parameters delivered in the assertion,
the engine assigns user id and local keystone groups membership. There may be multiple rules
(stored in one ruleset) defined per {identity provider, protocol} tuple. Each rule consists of two
major entries: local and remote where former is responsible for evaluating input issued by the
trusted identity provider and the latter for generating input for ephemeral user identity. Rules
are additive - effective ephemeral identity is an union of all subsequent, positively evaluated
rules. An example of mapping rules is presented in the table 1

{
”local”: [
{

”user”: { ”name”: ”{0}” }
},
{

”group”: {”id”: ”0cd5e9”}
},
{

”group”: {
”name”: ”IT−staff”,
”domain”: { ”name”: ”CERN” }
}
}

],
}

{
”remote”: [
{

”type”:”DEPARTMENT”,
”any one of”: [”IT”]
},
{

”type”: ”GROUPS”
”whitelist”: [”IT/OIS”, ”MANAGEMENT”]
}

]
}

Table 1. Mapping rules

5.1.1. local - an entity that defines local attributes - user id of the ephemeral user and list
of effective local keystone groups that the user will become a member of. Groups must be
added to keystone configuration prior to federated authentication. Being a member of a group
implies inheriting role assignments tied to a group. Rules allow for direct transfer of assertions’
parameters into local entities (i.e. an e-mail address from the assertion may be used as a user id),

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

6



transferring black/whitelisted parameters and evaluating parameters with a boolean result (if
assertion’s parameter 1 equals ”A” and parameter 2 doesn’t equal ”B” then assign group ”G”)

How ephemeral users are identified depends on actual rule. It is recommended to make an
effort to ensure proper user identification. Federated tokens always carry identifier of issuing
identity provider, as well as federated protocol , so user identifiers can be grouped by {identity
provider, protocol} tuple. However, many services depend only on user id attribute so it is
advised to build rules making them unique within a system deployment.

5.1.2. remote - an entity defining rules that must pass assertion evaluation. All the subsequent
requirements must be positively validated and only then ephemeral user will be entitled for the
corresponding local rule.

Following keywords iare available for a remote rules specification:

• any one of - validated parameter must match one of the specified values. Result is either
true or false,

• not any of - validated parameter must not match any value specified in the rule. Result
is either true or false,

• whitelist - used for positive filtering parameter where rules can be used in direct mappings,

• blacklist - used for negative parameter filtering where parameters can be used in direct
mappings

Regular expressions can be used for parameter evaluation, however a regex=True directive
must be added in the rule’s section.

6. Deployment and configuration
In order to setup OpenStack deployment capable of federated authentication deployers must
install keystone server on top of the Apache HTTPD webserver and add modules for proper
federated protocol handling. The keystone team has tested and recommend mod shib module
for SAML deployments as well as mod auth oidc for OpenID Connect.

Since the OpenStack Icehouse release, OS-FEDERATION is supported with use of SAML
protocol enhanced with ECP. WebSSO support has been added in OpenStack Kilo release (April
2015), both in keystone and horizon.

7. OS-FEDERATION auditing
Traceability and auditing are important aspects of running every service. Whether it is for the
billing purposes or post-mortem analysis, administrators have to be able to trace all actions of
all their users. For that purpose OpenStack utilizes Cloud Auditing Data Federation (CADF)
[9] - a standard that enables cross-vendor information sharing via its data format and interface
definitions. CADF has been developed by Distributed Management Task Force (DMTF) and
fully adopted by OpenStack keystone [10] [11]. Each action requested by a user triggers a
broadcast of a CADF event which is later injected into the message bus. Such events can be
consumed, parsed and stored by other services, for instance OpenStack ceilometer. CADF events
are also broadcasted for ephemeral users’ actions, making them fully traceable and accountable.

8. Conclusions
Cloud identity federation is a suitable way to share identities between many, independent cloud
deployments. It can be used for further optimizations of resource usage (by using remote cloud
resources when local are fully saturated) as well as quick configuration of shared infrastructures
used for collaborative work.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

7



Using open and well tested standards in OpenStack ensures that only the best and most
secure practices are bought along. Cloud identity federation is also a first step towards truly
hybrid clouds.

References
[1] - http://www.nist.gov/
[2] - http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
[3] - http://www.openstack.org
[4] - http://www.gartner.com/it-glossary/federated-identity-management
[5] - http://saml.xml.org/saml-specifications
[6] - http://openid.net/connect/
[7] - https://wiki.oasis-open.org/security/SAML2EnhancedClientProfile
[8] - http://oauth.net/2/
[9] - http://www.dmtf.org/standards/cadf

[10] - https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse#Key New Features 5
[11] - https://wiki.openstack.org/wiki/ReleaseNotes/Juno#Key New Features 4

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022015 doi:10.1088/1742-6596/664/2/022015

8


