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Abstract. Lately, there is a trend in scientific projects to look for computing resources in
the volunteering community. In addition, to reduce the development effort required to port
the scientific software stack to all the known platforms, the use of Virtual Machines (VMs)u
is becoming increasingly popular. Unfortunately their use further complicates the software
installation and operation, restricting the volunteer audience to sufficiently expert people.
CernVM WebAPI is a software solution addressing this specific case in a way that opens
wide new application opportunities. It offers a very simple API for setting-up, controlling and
interfacing with a VM instance in the users computer, while in the same time offloading the user
from all the burden of downloading, installing and configuring the hypervisor. WebAPI comes
with a lightweight javascript library that guides the user through the application installation
process. Malicious usage is prohibited by offering a per-domain PKI validation mechanism. In
this contribution we will overview this new technology, discuss its security features and examine
some test cases where it is already in use.

1. Introduction
During the past years, where virtualization became a standard part of the lifecycle of the
experimental software, we have seen a revamped interest in volunteer computing in High Energy
Physics. Being able to run any simulation or analysis framework in all known platforms,
experiments are now trying to get a share on the volunteer community. Such behaviour is
expected, if someone considers the well-established amount of resources available for free, and
the boost in publicity a volunteer computing project can offer.

In this paper we are explaining how virtualization became the standard in volunteer
computing in HEP and which difficulties had to be addressed. In Section 2 we are presenting the
CernVM WebAPI , a technology developed in order to address these problems, including all
the technical details. In Section 3 we are elaborating on the security features of this technology
and on Section 4 we present some cases where it has already been used. Finally, on Section 5
we are summarizing our results and presenting our future plans.

1.1. Virtualization in Volunteer Computing
The foundation was set in 2011, when the LHC@Home 2.0 (Test4Theory) [1] was the first
BOINC project to use virtualization. The base operating system was CernVM, since it offered
an off-the-shelf solution for a virtualization-tailored Linux distribution, and a performant file
system (CVMFS) [2] capable of delivering software and updates to all instances with minimal
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effort. An in-house job submission mechanism, called Co-Pilot [3] was developed for bridging
the gap between untrusted volunteer environments and the experiment workload management
systems (e.g. ATLAS/PanDA or ALICE/AliEn). The project was quite successful and the
implementation became the reference for similar projects to come in the future [4].

Of course the project did not run without any problems. An important note that was
underestimated was the fact that not every volunteer is a computer expert. Indeed, when
the project was launched there was a lot of feedback by people with deep computer knowledge,
but after some time it was not spreading to the rest of the audience, as it would be expected.
Similar behaviours have also been observed in other BOINC projects [5]. Judging by their
feedback, the installation and the configuration of the hypervisor was an extra burden that not
every volunteer was willing to carry.

In addition to that, not all the guest configurations were applicable on all the volunteer
hardware. Frequently in such cases the hypervisor just stopped working, providing an obscure
error, or no error description at all, making the debugging of such cases quite troublesome.

Finally, the hypervisor window was yet another point of attention in the variety of windows
that accommodate the BOINC interface. For example, the user registration and statistics page
is opened in a Web Browser, the computing resources allocated through the BOINC agent, while
the project details are shown in yet another web browser or application window. This constant
switch of contexts was also another topic of complaint by the users.

2. CernVM WebAPI
Following the suggestion of Ben Segal (CERN IT), CernVM WebAPI was developed as a
solution to address all the problems related to the delivery, installation and control of a
Virtual Machine (VM) in the users computer, including the installation and configuration of
the underlying hypervisor. It is designed to automatically take all the appropriate actions in
order to mitigate most of the known problems a user can face, keeping the input to the bare
minimum.

This offload of maintenance tasks to the CernVM WebAPI not only benefits the end user,
but the developer too. The system provides a very simple API for controlling VMs in the users
computer, while in addition it offers a rich set of callback hooks, notifying the developer for
every change in the system.

Its most advantageous feature though is the fact that all these operations are executed in the
context of the web browser. This consolidates all the individual Graphical User Interfaces taking
place in a volunteer computing project in just a single webpage. Even actions that momentarily
require the users attention away from the browser appear as blocking pop-up interactions that
upon disposal resume normal operations in the original window.

Finally, CernVM WebAPI also provides a mechanism for interfacing with an agent
application inside the VM. A configurable TCP port can be designated as the API Port. The
system will automatically set-up the appropriate NAT forwarding rules and will monitor the
state of the port. When available, it will fire the appropriate callback to the user interface,
including the endpoint to contact in order to establish a connection. It thus becomes possible to
seamlessly integrate any kind of front-end the appliance provides, directly in the same website.

2.1. Sessions in CernVM WebAPI
Due to its ambiguous meaning, we would like to clarify the term session that will be used in this
paper. A session is almost equivalent to a VM. However opening a CernVM WebAPI session
doesn’t mean that you start a VM. We could say that a session is the description of a VM and
the channel to control its instance. In order to start or control a VM instance you need to open
a session that describes it first. Opening a session either creates a new description or reuses a
previous one.
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Figure 1. CernVM WebAPI component data flow. The client-side components are located
on the left side, while the server-side components on the right side. The dotted groups denote
external domains.

This is particularly useful in asynchronous environments – such as websites – where the
user might navigate away from the application and come back again at a later time. In such
cases, instead of creating a VM every time, the developer points the CernVM WebAPI to the
VM description and it will create such a VM only if a similar one is not found. Each session
is indexed by its name and is protected with a secret key, therefore prohibiting unauthorised
parties to control them. More details regarding the security of this mechanism can be found in
the security section below.

The use of sessions has also another advantage. Because it can only be in a finite number
of states, it is very easy to implement it’s logic as a Finite-State-Machine. This provides great
durability and even simpler programming API for the developer. Since the session is fully aware
of its current state, the developer has only to point it to the desired target state. The FSM logic
can route the request accordingly with no additional input. For instance, the developer has only
to call the function session.start() in order to start the VM, regardless of its current state.
The VM itself might be missing, paused, stopped or already running – it doesn’t matter. The
session logic will take the appropriate actions in order to bring it on the ‘‘running’’ state.

2.2. External Resources
The entire logic of the CernVM WebAPI is located in the user’s computer (client-side), however
some metadata must be requested from external resources. In figure 1 you can see the data flow
between all the components involved. The client-side components are the web browser that runs
the desired application and the CernVM WebAPI daemon [6]. If the daemon is not installed in
the system, the user is prompted to download and install it from CERN (a). Upon initalization,
the daemon will contact CERN again and fetch additional metadata in order to identify and
install a possible missing hypervisor and/or other components (b). If required, the CernVM
WebAPI will contact the hypervisor website in order to download its installer binary or other
resources (c).

When the daemon is requested to open a new controlling session, it will first contact the
application website to fetch the configuration details (d) and it will then validate the response
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Figure 2. CernVM WebAPI Client-Side Components: (a) The high-level javascript library that
is included by the web application, (b) The daemon process that runs in the user’s computer,
(c) The hypervisor interface and abstraction library.

against a whitelist of authorised domains, hosted at CERN.

2.3. Client-Side Components
As mentioned before, we wanted the entire user experience to be focused in the web browser.
However, due to the enhanced security features and sandboxing in the modern web browsers,
the task of communicating with the hypervisor from the browser is a challenging process.

Originally, the CernVM WebAPI system was implemented as a Netscape Plugin API
(NPAPI) browser extension, which was cleanly integrated in Firefox and Chrome and provided
the desired interface to higher-level system commands. However soon, Google decided to drop
NPAPI support from Chrome due to its ‘‘insecure’’ nature [7]. In fear of other browsers following
[8], we decided to use a different mechanism for escaping the sandboxed browser environment.

We tested various solutions and we concluded that the simplest, cross-platform and cross-
browser solution was to use WebSockets to communicate with an external process. That process
would then handle the lower-level operations (figure 2). However, this means that the user had
to follow at least one installation process. Since this additional installation process could be a
potential point of confusion for the end-user we minimised the overall duration and the user’s
input.

We abstracted the complex process of installation and communication with the external
process in a javascript library that complements the daemon (cvmwebapi.js). This library takes
care of most of the heavy-lifting for the developer, enabling full integration to any project with
just a few lines of code.

The external process runs a tiny web server with WebSocket support (provided by the
libMongoose [9] library), listening on the localhost address. Its sole feature is to pass the
commands from the javascript interface to the libCernVM [10] library that takes care of all the
low-level operations. This library takes care of detecting, downloading, installing and configuring
the hypervisor and once it’s ready starting and controlling the VMs. Most of its code has been
reclaimed from the previous, NPAPI version.

2.3.1. The cvmwebapi.js Library takes care of the low-level communication between the
application website and the daemon process. However, in addition to its interface logic, it
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also makes sure that the application is installed in the user’s computer. This installation, along
with the interface logic will be explained with some examples, denoting the simplicity of the
code requirements:

Upon including the library, the CVM namespace is introduced to the global scope. To request
an API access to the daemon process you will need to call the CVM.startCVMWebAPI function,
as illustrated below:

CVM.startCVMWebAPI(

function(api) { }

);

This will trigger the Interface logic, that will try to establish a connection to the known
websocket endpoint. Upon failing to do so, it will trigger the Installation logic, that will inject
a the appropriate DOM elements in the website and guide the user through the installation
process.

The installation guidelines are customised for every operating system / browser configuration
and explains the step-by-step actions the user has to take in order to download the installer and
execute it. Upon completion, the daemon will be started and the Interface logic will therefore
succeed on it’s attempt to reconnect. It will then take over, clean-up the injected DOM elements
and perform an initial handshake. It will then fire the callback function passed as an argument
in the CVM.startCVMWebAPI function, indicating that the API channel is now established and
ready to use. Now it’s possible to request a VM session using the api.requestSession like so:

CVM.startCVMWebAPI(

function(api) {

api.requestSession("http://example.com/vmcp.cgi?vm=1", function(session) {

// Now you can use your session in the ’session’ variable.

}

}

);

The first argument of the CVM.requestSession function is a URL to contact in order to fetch
the configuration information for the Virtual Machine to create or resume. This information is
signed with an authorized private key in order to prohibit unauthorized use of the CernVM
WebAPI technology. You can refer to the VMCP sub-section of the security section below for
more details.

Both api and session instances fire a set of callbacks which can be used in order to monitor
the progress of the request. In addition, the session instance, fires additional callbacks when
the session state has changed or when the designated API Port becomes available or unavailable.

2.3.2. libCernVM Library The libCernVM library is a toolset for interfacing with any
hypervisor available in the user’s computer. It is not strictly bound to the CernVM WebAPI
technology and can be used in any other project. It provides an abstraction in two levels, in the
hypervisor and in the VM instance level, while in the same time it offers a modular design to
minimise the effort of future additions.

The hypervisor abstraction is achieved by reducing the interface operations in just two:
ensure hypervisor integrity and create/resume a session. The first checks its configuration and
if something is wrong takes the appropriate corrective actions and the latter one creates a new
VM or opens the control channel to an existing one.

Each VM instance in a wrapped in a session, as explained in the section 2.1. libCernVM
provides the FSM engine and the skeleton for implementing the session abstraction in any
hypervisor.
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3. Security
Performing low-level system operations, such as controlling Virtual Machines from the browser,
introduces a considerable security risk. Therefore, extra care must be taken in order to ensure
that the appliance is not launched by an untrusted source.

In order to address these security concerns, the CernVM WebAPI system introduces three
layers of security:

(i) Coding-level security: Ensure no system command is executed, other than the hypervisor
Command-Line Interface, and ensure no user-input reaches a system command un-sanitized.

(ii) Session-level security: Protect VM sessions so unauthorized parties cannot gain control.

(iii) Domain-level security: Ensure that only trusted domains can use this technology.

For the coding-level security, we ensured that the only system command executed is the
hypervisor CLI. In addition, we made sure that no user input reaches that command, allowing
only numerical values within a specific boundary and only after pre-processing by a sanitisation
function.

For session-level security, we are using a shared secret between the CernVM WebAPI system
and the web application that started it. If upon requesting a new session one with the same
name exists, the CernVM WebAPI is going to check if the secrets match. If not, the request is
denied.

For domain-level security, we are using a public-key infrastructure (PKI). A whitelist of
trusted domains is published in a trusted server, against which the session requests are validated.
The mechanism that was implemented in order to ensure the domain integrity is referred to as
Virtual Machine Configuration Point and is explained below.

3.1. Virtual Machine Configuration Point (VMCP)
Since the information required in to boot the VM contain information about the application to
run, it’s important to ensure that they cannot be changed maliciously. For the same reason,
it’s important to trust only validated sources. Therefore CernVM WebAPI must validate
the authenticity of each request, which implies that each request is signed. To accommodate

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022010 doi:10.1088/1742-6596/664/2/022010

6



this requirement, the system enforces the VM configuration to be delivered by an authoritative
endpoint, called Virtual Machine Configuration Point or VMCP.

The VMCP is a regular HTTP/HTTPS endpoint, accessible by its URL. CernVM WebAPI
will contact it directly, using it’s own http library (cURL) and not through the browser, ensuring
the security of the transport channel. The response is a JSON object that describes the VM
properties, including a signature field. The latter is an RSA-SHA256 signature generated using
the private key dedicated on the domain the request originates from. The library will also
download the domain whitelist from CERN, validate its integrity and then locate the public
key that corresponds on the originating domain (figure 3). Upon successfully validating the
response, the library will grant access on the requested resources.

An example of a VMCP response is the following:

{

"name": "DemoVM01",

"secret": "s3cr3tk3y",

"memory": 512,

"vcpus": 1,

"cernvmVersion": "1.18-2",

"userData": "[amiconfig]\nplugins=cernvm\n[cernvm]\nusers=user:users;password",

"signature": "01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b"

}

In order to protect against replay attacks, along with the request the library passes a random
salt value, that should be included in the signature calculation.

3.2. HTTPS restrictions
Even though WebSockets are very compatible between platforms and browsers, there is a serious
limitation. Because of Same-Origin Policy [11] it’s not possible to mix http: and https:

resources, and therefore it’s not possible to use CernVM WebAPI under a website served under
HTTPS. That’s because the embedded web server in CernVM WebAPI cannot serve content
under HTTPS, because a valid, third-party SSL certificate cannot be issued for the ‘‘localhost’’
domain. Therefore any request originating from an https: towards the local http: web socket
will fail.

Unfortunately there is no off-the-shelf solution to this problem. Thankfully it is still possible
to use a mix of these two protocols with a caveat: Whilst in the https domain, the user expresses
his/her interest on starting a VM. The server prepares all the information required by CernVM
WebAPI and stores it in a key/value store, under a random key name. It then opens a pop-up
window pointing to a publically accessible http: url, that includes the key name as part of
the request. CernVM WebAPI can be then used on that window normally. This solution is
already in use on the CernVM-Online dashboard (https://cernvm-online.cern.ch).

4. Use Cases
The CernVM WebAPI technology was field-tested in a pilot event called ‘‘CERN 60 Computing
Challenge’’ [12]. During this challenge, we asked people from around the globe to start a Monte-
Carlo simulation in their computers, trying to get an aggregate virtual event rate comparable to
a typical CERN LHC experiment. We designed a clean, informative web interface and created
a dashboard for the CernVM WebAPI .

The challenge ran for 15 days, through which we reached out to 8,000 unique visitors. Out
of them, 5,400 managed to successfully boot the challenge VM without any problem, while
1,100 people had a blocking issue. By processing the analytics information collected during the
challenge we realised that about 80% of them were using a poor-quality internet connection.
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CernVM WebAPI has also been used in the CernVM-Online dashboard where it is used for
testing a context definition.

4.1. The Power of Analytics
For the challenge, we decided to use Google Analytics (GA) for tracking the behaviour of
our users. Since CernVM WebAPI is embedded in the web page, it required no effort to
forward its events directly to GA. We were surprised to see the new horizons this technology has
opened: It was very easy with GA to isolate the hypervisor or CernVM WebAPI errors and
to correlate them to other metrics, such as the provider, its performance, geographic location
and demographics. As a result, by the end of the challenge we had very detailed information on
which features to improve.

5. Conclusions and future plans
In this paper we explained how the CernVM WebAPI technology makes it easy for people
without any prior experience with computers to join a volunteer computing project based on
virtualization. We explained how it works behind the scenes and how it ensures that no malicious
activity can take place in a volunteer’s computer. We also demonstrated its power in a real world
scenario.

The technology is already in a stable state, however there are a couple of improvements
planned for the near future. To start, we would like to add support for other major hypervisors
other than VirtualBox, in order to use the most ‘‘natural’’ hypervisor for each platform.
Moreover, we would like to address the cross-origin request restrictions in order to allow it
to operate seamlessly on https: domains. Finally, we would like to add a graphical dashboard
from which the user can see and control the local instances.
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