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Abstract. A simple and efficient coupled displacement field method is developed to study the
buckling load parameters of the moderately thick rectangular plates. This method has been
successfully applied to study the same for the Timoshenko beams. A single term trigonometric
admissible displacement field is assumed for one of the variables, say, the total rotations (in both
X,Y directions). Making use of the coupling equations, the spatial variation for the remaining
lateral displacement field is derived in terms of the total rotations. The coupled displacement
field method makes the energy formulation to contains half the number of unknown independent
coefficients, in the case of a rectangular plate, contrary to the conventional Rayleigh-Ritz
method. The expressions for the non-dimensional buckling load parameters of the moderately
thick rectangular plates with all the edges simply supported are derived. The numerical values
of these parameters obtained using the coupled displacement field method match very well with
open literature demonstrating the effectiveness of the coupled displacement field method.

1. Introduction
Knowledge of buckling load parameters of moderately thick plates is a necessary design input
that has to be considered in the initial design phase. The energy methods provide a convenient
means for computing the buckling load parameters and the solutions obtained using this
approach are upper bounds and the accuracy of the solution depends on the admissible functions
chosen for the lateral displacement and total rotations. The widely used energy method is the
classical Rayleigh - Ritz (RR) method where in the displacement field of a structural member
is generally approximated by simple trigonometric or algebraic admissible functions. Single or
multi-term functions are chosen to satisfy the geometric boundary conditions involved in the
problem.

The concept of the coupled displacement field(CDF) which was successfully used in the finite
element (FE) structural members analysis [1-3]. A continuum analogue of the FE analysis with
the CDF method is not received much attention except in the formulation of Zhou[4] where the
two fields (displacement and rotation) are coupled through an equation which is dependent on
the applied load. This approach different from the FE method based on the CDF.
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A general CDF method is presented here, where the coupling equation is independent of the
applied load, to study the buckling and free vibration behavior of uniform Timoshenko beams.
The effectiveness of the proposed CDF method is demonstrated successfully by comparing the
buckling load and the frequency parameters with those obtained from the RR method [5,6] for
the short columns and beams. In the present study, the authors made an attempt to show the
applicability of the CDF method to study the buckling of uniform moderately thick rectangular
plates.

The proposed CDF method, if generalized to a n term admissible functions, will have n
unknown coefficients because of the coupling equation used, where as, the RR method contains
2n unknown coefficients for the square/rectangular plate [12]. On the other hand, if an accurate
single term admissible function is used in the CDF method, then a one unknown coefficient
problem has to be solved, where as two unknown coefficients are associated in the RR method.
Thus the proposed CDF method significantly simplifies the formulation of the buckling problem
of moderately thick rectangular plates. In this paper, the coupling equations used are taken
from [7]. In general the CDF method reduces the complexity of the problem by a factor
two compared to the RR method, as mentioned earlier. The practical utility of the CDF
method is demonstrated by solving the buckling problem of the isotropic and uniform moderately
thick rectangular plates for all edges simply supported boundary conditions, by using the CDF
method. The solution procedure and the numerical results obtained speak for themselves about
the simplicity of the CDF method applied to the buckling problem of the moderately thick
rectangular plates compared to the RR method. The first order shear deformation theory is
briefly given in the following section.

2. First order shear deformation theory of plates
The simplest shear deformation plate theory is the first order shear deformation plate theory
(FSDT), also referred to as the Mindlin plate theory [8] where the displacements u,v and w are
given by

u(x, y, z) = zθx(x, y), (1)

v(x, y, z) = zθy(x, y), (2)

w(x, y, z) = w(x, y), (3)

where u and v are the inplane displacements in x and y directions, w is the transverse
displacement along z direction, θx and θy denote rotations about the y and x axes respectively.
In the FSDT, the shear correction factors are introduced to correct the discrepancy between the
actual transverse shear stress distribution and those computed using the kinematic relations of
the FSDT. The shear correction factor k depend not only on the geometric parameters, but also
on the loading and boundary conditions of the plate. However, a value of k=5/6, the widely
used value of the shear correction factor is used in the present study also.
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where h is the thickness of the plate, W is the work done because of the biaxial compressive
load, Nx is the compressive load per unit length acting on the two edges perpendicular to x axis
and Ny is the compressive load per unit length acting on the two edges perpendicular to y axis.
Suitable admissible functions satisfying mainly the kinematic boundary conditions (some times
the admissible functions may satisfy some or all of the natural boundary conditions and do not
violate the variational principles) are assumed for w and θ. In the present study for the sake
of simplicity and clarity and easy understanding of the CDF method a single term admissible
functions for w and θ are chosen here and is shown that the single term trigonometric admissible
functions for the two boundary conditions of the plates considered, given later, are found to be
accurate enough for all the practical engineering purposes.

The detailed procedure for CDF method are discussed in this section for the evaluating the
buckling load (biaxial and uniaxial compressive load per unit length) of a moderately thick
uniform rectangular plate with all edges simply supported for which the exact buckling mode
shape for the transverse displacement w is well known(sine waves in the x and y directions).

3. Coupled displacement field (CDF) method
In this method an admissible functions for θx and θy which satisfies all the geometric boundary
conditions on the plate domain are assumed and the field for lateral displacement w is evaluated
using the coupling equation, the derivation of which is briefly given below

The expression for the strain energy U is already given in Eq.(4) and the work done by the
externally applied lateral loads Wb used in the static analysis is given as

Wb =

∫ a

0

∫ b

0
pwdxdy, (6)

where p is the lateral load distribution per unit area acting on the plate. Taking the variation
of the total potential energy as

δ(U −Wb) = 0, (7)

The following static equilibrium equations independent of the externally applied load term [8]
are obtained. Note that two coupling equations are obtained for the rectangular plate.
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Eqs.(8) and (9) are called as the coupling equations in the CDF method and is used to couple
the total rotations θx and θy and the transverse displacement w, so that the two independent
unknown coefficients problem in the RR method reduces to a single unknown coefficient problem
in the CDF method. The effectiveness of the CDF method is brought out in the following section.

Though admissible functions θx and θy can be written in a series form, here a single term
admissible functions for θx and θy is chosen again with the same intention of simplicity and
better understanding of the method as

θx = αf1 (x, y) , (10)

θy = αf2 (x, y) , (11)
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where α is the undetermined coefficient and fi(x, y), i = 1, 2 is the single term admissible
function. Note that the functions for θx and θy are the same as, the rectangular plate is
considered in the present study. Substituting the admissible functions for θx and θy as given in
Eq.(10) and (11) in Eq.(8) and (9), the coupled displacement field for the lateral displacement
w, after integration is obtained, as

w = αf3 (x, y) . (12)

Note that because of the use of the coupling equation, the transverse displacement distribution
w also contains the same undetermined coefficient α as existing in the θ distribution. The lowest
buckling load parameter is obtained from the following equation.

d(U −W )

dα
= 0. (13)

In the CDF method the admissible functions for θx and θy are assumed in the functional form,

noting the similarity between dw
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Substituting Eqs.(14) and (15) in the coupling Eqs.(8) and (9) and after simplification the slopes
are obtained as
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After integration the lateral displacement field for w, as
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Substituting Eqs. (14), (15) and (18) in Eqs. (4) and (5) we get the expression for U and W , as
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where Nx = Ny, since the plate is under bi-axial compression load, by minimizing the total
potential energy as (d(U − W )/dα) = 0, the buckling load parameter is obtained, from one
equation only as
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4. Numerical results and discussion
To show the simplicity, effectiveness and ease of the proposed CDF method, buckling problem
of the moderately thick uniform rectangular plates with all edges simply supported (Figure.1
and Figure.2) boundary conditions, for different aspect ratios and different loading conditions
are given. Single term trigonometric functions are considered to study the influence of the
thickness ratio h/b on the buckling load parameters. Table 1 shows values of non dimensional
buckling loads for moderately thick square plates under uniaxial and bi axial compressive loads
for thin plate. In the same table results obtained by the present method is compared with [7]
and the match is very good. Table 2, Table 3 shows values of non dimensional buckling loads
for moderately thick rectangular plates under uniaxial compressive loads for different aspect
ratios. Table 2 also gives buckling load values for higher modes and for fundamental mode
for various plate thickness ratios. Table 2 also shows results obtained by the present method
is compared with [7] and the results are matching very closely. Table 4 shows values of non
dimensional buckling loads for moderately thick rectangular plates under bi axial compressive
loads for different aspect ratios. It is in general observed that non dimensional buckling loads
are decreasing with increase of plate thickness ratio.

Figure 1. S-S-S-S rectangular plate under uniaxial compression
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Figure 2. S-S-S-S rectangular plate under biaxial compression

Table 1. Values of non dimensional buckling load parameter λ with shear (h/b) for all edges
simply supported moderately thick square plate

γ a/b h/b Present method Ref[7]

0 1

0 4 4
0.01 3.9977 3.998
0.05 3.9443 3.948
0.1 3.7864 3.8

1 1

0 2 2
0.01 1.9988 1.9
0.05 1.972 1.974
0.1 1.8936 1.999

When γ =0 plate is under uniaxial compression, γ =1 plate is under biaxial compression.
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Table 2. Values of non dimensional buckling load parameter λ with shear (h/b) for all edges
simply supported moderately thick rectangular plate under uniaxial compression

a/b h/b Present method Ref[7]

0.5

0 6.25 6.25
0.1 5.4776 5.523
0.05 6.0369 6.051
0.01 6.2413 6.25

1.5

0 4.3400 (2,1) 4.34
0.1 (2,1) 4.0824 4.045
0.05 (2,1) 4.2734 4.262
0.01 (2,1) 4.3375 4.337

2 0 4.0000 (2,1) 4
2.5 0 4.1344 (3,1) 4.134

3

0 4.0000 (3,1) 4
0.1 (3,1) 3.786 3.8
0.05 (3,1) 3.9446 3.948
0.01 (3,1) 3.9977 3.998

Numbers in the bracket(m,n) refers at which critical buckling load occurred; (m,n)=(1,1) for
all other cases.

Table 3. Values of non dimensional buckling load parameter λ with shear (h/b) for all edges
simply supported moderately thick rectangular plate under uniaxial compression

a/b h/b Present method
Ref[10]

Ref[11 ]
FSDT HSDT

0.2

0.5 1.3988 1.3988 1.6851 1.6851
0.2 6.8755 6.8753 7.0529 7.0529
0.1 15.6017 15.601 15.658 15.658
0.05 22.8524 22.851 22.859 22.859
0.02 26.2698 26.269 26.27 26.27
0.01 26.8435 26.843 26.843 26.84

0.4

0.5 1.3761 1.3761 1.4455 1.4455
0.2 4.6264 4.6264 4.6466 4.6466
0.1 6.9826 6.9824 6.9853 6.9853
0.05 8.0011 8.001 8.0012 8.0012
0.02 8.3417 8.3417 8.3417 8.3417
0.01 8.3934 8.3928 8.3928 8.3928

1

0.5 1.6598 1.6597 1.6759 1.6759
0.2 3.2633 3.2636 3.2653 3.2653
0.1 3.7864 3.7864 3.7865 3.7965
0.05 3.9443 3.9443 3.9443 3.9443
0.02 3.9909 3.9909 3.9909 3.9909
0.01 3.9977 3.9977 3.9977 3.9977
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Table 4. Values of non dimensional buckling load parameter λ with shear (h/b) for all edges
simply supported moderately thick rectangular plate under biaxial compression

a/b h/b Present method Ref[7]

0.5

0.1 4.3821 4.418
0.05 4.8301 4.841
0.01 4.993 4.993

0 5 5

1.5

0.1 1.3878 1.391
0.05 1.4301 1.431
0.01 1.4437 1.444

0 1.4444 1.444

3

0.1 1.0772 1.079
0.05 1.1025 1.103
0.01 1.1111 1.111

0 1.1111 1.111

5. Conclusions
In this paper, a simple and effective CDF method compared with other researchers is proposed
to study the buckling of moderately thick rectangular plates. This method because of the
use of the static equilibrium equations to couple the total rotations and the transverse
displacement, becomes an n undetermined coefficient system when compared to the classical RR
method[12] where 2n undetermined coefficients are present, thus reducing the computational
effort significantly. As a special case, if n=1, which means when a single term admissible
function is used, the CDF method contains only one undetermined coefficient which simplifies
the solution procedure as has been demonstrated. Numerical results, in terms of the buckling
load parameters, for several thickness ratios are presented in this paper for the all edges simply
supported boundary condition of the moderately thick rectangular plates show the simplicity of
the CDF method when compared to the classical RR method. The results obtained by the other
researchers are also compared with the present method wherever possible and are matching very
closely.
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