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Abstract. The flow of an incompressible micro-polar fluid generated due to rectilinear
oscillations of a sphere about a diameter of the sphere is considered. The flow is so slow that
oscillations Reynolds number is less than unity and hence nonlinear convective terms in the
equations of motion are neglected. A rare but distinct special case in which material constants
satisfy a resonance condition is considered. The stream function and drag acting on cylinder
are obtained. The effect of physical parameters like micro-polarity and couple stress parameter
on the drag due to oscillations is shown through graphs.

1. Introduction

Several Stokes flow problems concerning micro-polar fluids have been studied by researchers over
the past a half a century ever since A.C.Eringen introduced the micro-polar fluid theory [1].
S.K.Lakshmana Rao et al in [2-5] studied the oscillatory flows of circular cylinder, sphere,
spheroid and elliptic cylinder in incompressible micro-polar fluids, the main thrust of the
investigation being the determination of the drag or couple as the case may be on the oscillating
body. The drag or couple was expressed in terms of two parameters K and K’ and their numerical
variation was extensively studied for a spectrum of micro-polarity parameters and oscillation
parameters. However in all these problems, a special case, which are branded as oscillatory flows
of “Resonance” type that arise when the material parameters of the fluids are constrained in a
particular form (to be stated later) have not been investigated. The rare but distinct possibility
of resonance flows has been noticed in [4,5] and the investigation in this case is mathematically
more complicated than in the usual non-resonance type flows. This type flows arise whenever
oscillations take place in any non-Newtonian fluids. For example this case araises in the papers
of [6-8], but these cases were not attempted by the authors. As far as the authors know, these
cases were not studied by any researcher. In this paper we propose to investigate this case of
resonance type flows in micropolar fluids.

2. Basic equations
The basic equations of an incompressible micro-polar fluid introduced by A.C. Eringen[1] are
given by:

9 _
Fi + div(pQ) = 0, (1)
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p(afg—i—Q-VQ):—VP—i—k Vxl—(u+k)VxVxQ, (2)
/] _ _ _ _
pJ(gT—i-Q-Vl) — 24+ k VXxQ—n VXVxI+(atf+y)V(V-I), (3)

where @, fluid velocity and micro-rotation vectors, p is density, 7 is time, J is gyration
coefficient, p is coefficient of viscosity, k£ is micro viscosity coefficient and «, 3,~ are couple
stress viscosity coefficients. For micro-polar fluids, the stress components 7;; and couple stress
components M;; satisfy the following constitutive equations.

1
Tij =—-F 5ij + 5(2N + k)(ui,j + uj,i) +k eijr(wr - lr)a (4)
Mij=aly; 0i5+ 0 lij+7 g, (5)

where w, = r"* component of %(curl@) and e;j, is permutation tensor= 0 if any two indices are
equal and =1 if i,j,r are cyclic and -1 if i,j,r are acyclic.

th

3. Statement and formulation of the problem

A sphere of radius a is performing rectilinear oscillations with velocity Upe’®” about its diameter
in an infinite vat containing incompressible micro-polar fluid. Spherical coordinate system
(R, 0, ¢) with base vectors (e, eg, e4) with origin at the centre of the sphere and Z axis along
direction of oscillations of the sphere is considered. The flow is axially symmetric, hence the
velocity field is independent of toroidal coordinate ¢ and the flow will be in cross sectional plane
of the sphere containing the base vectors (e,, eg). The velocity and micro-rotation are assumed
in the form:

p "

Figure 1. Geometry of the oscillating cylinder.

Q=¢e"“"U(R,0)e, + V(R,0)eg and [=e""C(R,0H)e.. (6)

The following non-dimensional scheme is introduced. Capitals and LHS terms indicate physical
quantities and small letters and RHS terms indicate corresponding non-dimensional quantities.

U
R=ar, U="Upu, V="V, Q=Uygq, 0:030,

U t
l:l/zo, U = alpyp, P = ppUg, T:UQE. (7)
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The following are non-dimensional parameters viz, j gyration parameter, w frequency parameter,
s couple stress parameter, ¢ cross viscosity or micro-polarity parameter and Re oscillations
Reynolds number for micro-polar fluids.

. Jpoa? oUp ka? k pUpa
J= ) - S=— Re =

) = > - . 8
~ a vy ¢ w+k ¢ w+k (8)

By the choice of velocity field in (6) and incompressibility condition in (1), we notice that stream
function can be introduced as

_1o

u

and v = —a—i} i.e. ¢=V X (Ye). 9)

Using (6), (7), (8) in (2) and (3) we get

wReqg=—Re-Vp+cV xv—V xV xgq, (10)
1
iju=—-2sv+sVxqg—VxVxv+-V(V-o). (11)
€
By taking curl to equation (10) pressure p can be eliminated and then using (6) and (9) we get,
iw Re- E*) = cE*C + E*, (12)
¢(2s +1ij)C = E*C — sE*1, (13)

0? n 1 0> cotf O
or?  r2 062 r2 06’
Taking E? operation to (13) and then eliminating E?C using (12) we get,

E? =

E*(E? = M) (E* = M)y =0, (14)
¢(25 +i5)C = —E* + (iw - Re — sc¢)E*y, (15)
where
M4+ =(2-c)s+i(j +wRe) and A\3 = iwRe(2s + ij). (16)
The equation for C can be re-written as
C = —“;RQGE%E? A2 A2y — By (17)
AT

The solution for 1 if A\; # A2 in (14) is given in [3]. The solution for ¢ for the case, A\; = A2 can
not be obtained as a limiting case of Ay — Ay . This case is referred to as “Resonance”. This
resonance occurs if the material coefficients follow the following relation:

v u+k)(p+k) and po = (2pn + k)k:+’ypa.
J 2n + 3k J(p+k)
In non-dimensional form these conditions are given by
(2—c)s=j—Re-¢ and (2—c¢)j =wRe(2+c). (18)

In this paper we are interested in the solution for ¥ for the case of resonance. In this case the
equations for ¢ and C are given by

iwRe

E*(E* -~ ))*) =0 and cC = — a

E%(E? - 2)%)¢ — E*y. (19)
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The following are the boundary conditions
The sphere is oscillating in the direction of Z-axis. Hence the non-dimensional velocity of the
sphere I' after removing ¢! is given by

qr = k = cosfer — sin fey,
which implies by no-slip condition
u=cosf and v = —sinf on r = 1. (20)
By hyper-stick condition given by
vr = %(curlq)p,
reduces to

C=0onr=1 (21)

4. Solution of the problem
Stream function 1, micro-rotation component C are assumed in the form

¥ = f(r)sin?# and C = g(r) cos? 6. (22)
Substituting (22) in (19) we get

iwRe
D2(D2 - )\2)2f =0 and cg=— \ DZ(D2 - 2)\2)f — D2f7 (23)
where 2
2
D= — — 5.
dr2 r2

Substituting (22) in (20) and (21), the conditions on f and g are obtained as:

F(1) = 3, £(1) =1 and g(1) =0. (24)

Since the equation (23) for f is linear, f can be taken as
f=Aofo+ Arf1+ Az fa,
with D?fy =0, D*(D? = X?)2f; = 0 and D*(D? — \?)*f, = 0. (25)
On solving (25), the solution for f is obtained as

A /
J(r) = 2 4 An/rE () + Asr 3K (). (26)
2
The following results are useful to note.
D*fi = N*f1 and D*fo = (=2Af1 + A% fa). (27)
Using (27) in (23), we get
cg = Ai(iw - Re — A\?) fi + As(iw - Re — A fo + 24502 f1. (28)
The constants Ag, Ay, As are obtained from the boundary conditions (24) as follows:
1 1 k%()\) / . k%(/\) / Ao %
-1 5/{:%()\) + Ak (M) ik%()‘) + Ak (M) Al = |1 (29)
0

2 2
0 (iwRe— )\Q)k:%()\) (iwRe — )\Q)k:%()\) +2Mks (N) A

Hence from (26), (28) and (29), f and g are completely known and hence ¢ and C are known.
Pressure: From equation (10) pressure, after cancelling e~ is obtained as follows.



International Conference on Vibration Problems (ICOVP-2015) IOP Publishing
Journal of Physics: Conference Series 662 (2015) 012015 doi:10.1088/1742-6596/662/1/012015

dp = Vp - dr = %dr + %de
= A [t & (—iwRey + cC + E*¢)dr + 15 & (—iwRey + cC + E*)d)],

r2 sin 0

p= é [(—iwRef + D*f + cg)2 cos 0% + %(—inef + D?f + cg) sin 0d6,
= 4 [(—iwRe - Ao fo)2cos 0% + &L (—iwRe - A fo) sin 6d6),

z'wAg
P= cos ), (30)

Drag acting on the cylinder per length L:
2m
Drag = D* = aL/ (T}, cos@ — Ty sinf) |p=q d0,
0

Multiplying D* by %U@ the non-dimensional drag D is obtained a

27
De~ %t = aL/ (Tyr cos @ — Trgsinf) |r—1 db, (31)
0
ou 2u + k)U, 2
T =—P+ 2u+k)e, =—P+ (2u+ k)@ =—-P+ W(f’ - Tf)Q cos 0.

Hence on r = 1,7} = —p.
Again,
T:G = (2/J + k)erg + k6123(w3 — 193),
= R g g(D2f + 4 — 2Ly — Klaging(Lp2f 4 g).
Hence drag in non-dimensional form is given by
D= fOZW[—Re -p-cosf + ReD?(D? — 2)\2) fsin 6] |,—1 db,
= fo% —iwReAg cos® 0 + iwRe(3 — Ag) sin® 0d0,
= miwRe(1 — 2A4,.

Hence the non-dimensional drag D is given by
D = Real[iwRe - w(1 — 2Ag)e™"]. (32)

5. Results and discussions
The values of ) are obtained from (16) by solving 2 —[(2—¢)s+i(j+wRe)|z +iwRe(2s+ij) = 0
for . Then for resonance case, the values of \ are given by

A= VE = \/[(2—c)s+2i(j+wRe)]' (33)

This equation involves 5 parameters which are related by two equations in (18). Hence we choose
three parameters as independent. Here w, Re and c are selected independently, with 0 < ¢ < 1,
Re < 1 and w > 1 such that w.Re is not negligibly small (say>1). For this range of values
of Re, the nonlinear convective terms can be neglected but local derivative is retained. After
selecting ¢, Re and w, the values of s and j are obtained from (18) and then A is obtained from
(33). The values of A are complex. These values for A are substituted in (29) and the constants
Ap, Ay and Ay are obtained. Then the stream function ¢ and drag D are obtained from (26)
and (32) respectively. Thus obtained ) will have complex values. To get physical picture, these
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values are multiplied by ¢! and its real part is taken, if the oscillations are in cosine functions.
Drag: From figure 2, it is observed that as s the couple stress parameter and j the gyration
parameter are increasing, the drag D decreases. The variation drag for different values of j is not
observed for small values of ¢<0.5. From figure 3, we observe that as Re, the Reynolds number
and w, the frequency parameter are increasing, the drag increases for small values of ¢ but as ¢
is nearing unity, the drag decreases. Since Re.w appears in the equations as a unit, the behavior
of drag with respect to Re and w is exactly similar. This is clear in figure 3.

Lzag Raadle 3ad0s wadd

(a) (b)

Figure 2. (a) Drag Vs micro-polarity parameter c¢ at different s. (b) Drag Vs micro-polarity
parameter ¢ at different j.
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Figure 3. (a) Drag Vs micro-polarity parameter c at different Re. (b)Drag Vs micro-polarity
parameter ¢ at different w.
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5.1. Stream function

By looking the stream lines in the six figures given below, it is observed that the entire flow region
is symmetric about axis of symmetry and streamlines form closed loops about the equatorial
region of the sphere. For small values of cross viscosity( micro-polarity) parameter ¢, the
stream lines are having negative values along the axis of symmetry and positive values near
the equatorial region of the sphere. (Black shade represents negative values and white region
represents positive values). As ¢ value increases, we can find a drastic change in the pattern
of the stream lines. The region along the axis of symmetry becomes white (i.e, positive) and
the region about the equatorial line of the sphere becomes black (i.e, negative). This indicates
the strong effect of micro-polarity parameter on the rotation of the sphere. It can be seen that
as ¢ is having values near to 0.5, the stream lines are forming two closed regions within which
the entire flow is contained in. This is an interesting phenomena to note. This may be due
to the fact that drag is highest when c is near to 0.1 and decreases as ¢ increases and reaches
a minimum value when c is about 0.5 and then the drag increases as ¢ increases again. Since
the case ¢ — 0,8 — 00, represents the case of viscous fluids, we can conclude that the drag
for viscous fluids is more than the drag of micro-polar fluids. Hence it can be inferred that
micro-polar fluids offer less resistance to flow and hence less drag.

(e) ¢=0.8 (f) ¢=0.9

Figure 4. Stream lines at different values of micro-polarity parameter c.
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