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Abstract. This paper investigates torsional vibrations in an initially stressed composite
poroelastic cylinder in the framework of Biot’s theory of wave propagation in poroelastic solids.
Poroelastic composite cylinder consists of two concentric cylindrical layers made of different
poroelastic materials. The governing equations are formulated from the Biot’s incremental
deformation theory. The non-dimensional frequency is computed as a function of ratio of
thickness to wavelength. The limiting cases of a poroelastic solid cylinder and poroelastic hollow
cylinder are discussed. The results are presented graphically for two poroelastic composite
cylinders and then compared with the published results.

1. Introduction
The studies of wave propagation in poroelastic solids have many applications in various fields
such as Seismology, Soil-mechanics, Bio-mechanics, Civil engineering, and Mechanical engineer-
ing. From the real time experiences, one may find that buildings, bridges and some manmade
structures consist two or more material that could be combined to take advantage of the good
characteristics of each of the materials. In the frame work of Biot’s theory [1], the effect of
boundaries on torsional vibrations in a poroelastic composite cylinder is reported in several pa-
pers [2-3]. Axially symmetric vibrations of composite poroelastic cylinder are investigated by
Malla Reddy and Tajuddin [4]. The study of torsional vibrations of an elastic solid is important
in several applications such as transmission of power through shafts with flanges at the ends as
integral parts of the shafts. The other use of torsional vibrations is measurement of the shear
modulus of elastic solids. The basic literature on the propagation of elastic waves is given by
Ewing et.al. [5]. Torsion waves of an elastic composite infinite circular solid rod of two different
materials are studied by Armenkas [6]. Investigation of axially symmetric wave propagation
in a two layered elastic cylinder is made by Whitter and Jones [7]. Torsional vibrations in a
poroelastic cylinder are reported in several papers [8-10]. The problem related to pre-stressed
elastic solids has been a subject of continued interest due to its importance in the said areas.
A detailed discussion about the theory of elastic medium under initial stress is given in Biot’s
incremental theory [11]. Torsional wave propagation in an initially stressed elastic cylinder is
studied by Dey and Dutta [12]. In the paper [12], governing equations are formulated for the
Biot’s incremental deformation theory. In the said paper, the velocities of torsional wave prop-
agation due to the presence of initial stress are calculated for different extension ratios. Selim
[13] investigated torsional wave propagation in dissipative elastic solid cylinder subjected to
initial stress. In the paper [13], the effect of damping on the propagation of torsional waves
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in incompressible cylinder of infinite length is discussed and it is proved that the damping of
the medium has strong effect on the propagation of torsional waves. Propagation of Rayleigh
waves in an initially stressed incompressible half space under a rigid layer are studied by Dey
et.al. [14]. It has been shown that Rayleigh waves cannot propagate in an isotropic medium
without tensile initial stress [14]. Plane strain deformation of an initially stressed orthotropic
elastic medium is studied using eigen value approach [15]. Surface wave propagation in an ini-
tially stressed transversely isotropic thermoelastic solid is studied by Baljeet Singh and Renu
[16]. Torsional surface waves in an initially stressed anisotropic poroelastic layer over a semi-
infinite heterogeneous half space with linearly varying rigidity and density due to irregularity
at the interface is studied in [17]. The propagation of plane waves is investigated in a general
anisotropic elastic medium in the presence of initial stress [18]. Love wave propagation in a
porous rigid layer lying over an initially stressed half space is studied in [19]. In the paper
[19], the propagation of Love waves in fluid saturated, anisotropic, porous rigid layer over a pre
stressed, non-homogeneous, elastic half space is investigated. In all the said papers, initial stress
is not considered in composite poroelastic solid cylinder. The presence of initial stresses in solid
materials can have a substantial effect on their subsequent response to applied loads that is
very different from the corresponding response in the absence of initial stresses. In the present
paper, torsional vibrations in the composite poroelastic solid cylinder of infinite extent consists
of an inner solid circular cylinder of one material bounded by and bounded to a circular core
made of another poroelastic material under initial stress are investigated. The non-dimensional
frequency is computed as a function of ratio of thickness to wavelength for thin and thick coating.

The rest of the paper is organized as follows. In section 2, governing equations and solution
of the problem are discussed. Boundary conditions and frequency equation are presented in
section 3. Particular cases are given in section 4. Numerical results are discussed in section 5.
Finally, conclusion is given in section 6.

2. Governing equations and solution of the problem
Let (r, θ, z) be the cylindrical polar coordinates. Consider a composite concentric isotropic
infinite poroelastic solid cylinder with inner and outer radii r1 and r2, respectively, subjected
to initial stress. The z−axis coincides with the axis of the cylinder. The substrate is a circular
solid cylinder with radius r1 and the coating is a thick-walled hollow cylinder having thickness
h(= r2 − r1). The equations of motion under initial compression stress σzz = −p along the axis
of the cylinder are [11]:
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(1)

where (u1, u2, u3) and (U1, U2, U3) are the displacement components of solid and fluid
respectively, σrr, σθθ, σzz, σrz, σrθ, and σθz are the stress components, ρij are mass coefficients,
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b is the dissipative coefficient and ωr, ωθ are rotational components given by,

ωr =
1
2(

∂u3
∂θ − ∂u2

∂z ),

ωθ =
1
2(

∂u1
∂z − ∂u3

∂r ).

(2)

The stress component σij and fluid pressure s [1] are

σij = 2Neij + (Ae+Qε)δij , (i, j = 1, 2, 3),

s = Qe+Rε.
(3)

In the above, eij are strain components given by

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (i, j = 1, 2, 3).

In the case of torsional vibrations, the equations of motion is reduced to the following equations:

∂σrθ
∂r + ∂σθz

∂z + 2σrθ
r − p

2
∂2u2
∂z2

= ∂2
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0 = ∂2
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∂t(u2 − U2).

(4)

In the case of harmonic wave solution eik(z−ct), the solution for circumferential displacements in
the cylinder become,

ju2(r, z, t) = jf(r)e
ik(z−ct), jU2(r, z, t) = jF (r)eik(z−ct), j = 1, 2. (5)

In Eq. (5), the quantities with subscripts 1 refer to the substrate while 2 refers to the coating.
c is the torsional wave velocity, k is wavenumber, i is complex unity, and t is time. Substituting
Eq. (5) and Eq. (3) in Eq. (4), one obtains

N
d2 jf
dr2

− (N − p
2)k

2
jf + N

r
d jf
dr − N

r2 j
f = −kc(jfρ11 + jFρ12)− bikc(jf − jF ),

0 = −k2c2(jfρ12 + jFρ12) + bikc(jf − jF ).

(6)

Solutions of Eq. (6) are

2f(r) = C1J1(2qr) + C2Y1(2qr),

1f(r) = C3J1(1qr).
(7)

In Eq. (7),

jq
2 =

1

jN
(k2c2 jρ11+k2c2 jρ12(

−jρ12kc+ ib

−jρ22kc+ ib
)+bikc(1− (

−jρ12kc+ ib

−jρ22kc+ ib
))−k2(jN− p

2
)), j = 1, 2.

The non-zero stresses both for the substrate and the coating are

2σrθ = 2N 2q(C1J2(2qr) + C2Y2(2qr))e
ik(z−ct),

1σrθ = 1N 1q(C3J2(1qr)e
ik(z−ct).

(8)
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3. Boundary conditions and frequency equation
The boundary conditions for stress free outer surface r = r2 and perfect bonding between the
substrate and the coating at the interface r = r1 are

2σrθ = 0 at r = r2

2σrθ = 1σrθ at r = r1,

2u2 = 1u2 at r = r1.

(9)

Substitution of Eqs. (7), (8) and (5) in Eq. (9) gives three homogeneous equations in three
unknowns C1, C2, and C3. A non-trivial solution can be obtained if the determinant of the
coefficient matrix vanishes. Accordingly, one obtains the following frequency equation:

| Aij |= 0, (i, j = 1, 2, 3) (10)

where,

A11 =
−2 2N

r2
J1(2qr2) + 2N 2qJ0(2qr2), A12 =

−2 2N
r2

Y1(2qr2) + 2N 2qY0(2qr2),

A13 = 0, A23 =
−2 1N

r1
J1(1qr1)− 1N 1qJ0(1qr1),

A31 = J1(2qr1), A32 = Y1(2qr1), A33 = −J1(1qr1),

(11)

A21, A22 are similar expressions as A11, A12 with r2 replaced by r1.

4. Particular cases
The composite poroelastic cylinder will be reduced to the poroelastic solid cylinder and the
poroelastic hollow cylinder under some special cases.

4.1. Poroelastic solid cylinder
When the poroelastic parameters of the substrate and coating are of same material, then the
composite cylinder will be reduced to solid cylinder of one material. Setting 2N = 1N =
N, 2q = 1q = q. Then the frequency equation Eq. (10) reduces to

J2(qr2) = 0, (12)

which is the frequency equation of torsional vibrations in poroelastic solid cylinder similar to
that of [10].

4.2. Poroelastic hollow cylinder
When the material constants of a substrate vanish, the composite poroelastic cylinder will
become a hollow poroelastic cylinder. Setting 1N = 0, 2N = N, 2q = q, 1q = 2q. at the
interface r = r1, then the frequency equation Eq. (10) reduces to

J2(qr2)Y2(qr1)− J2(qr1)Y2(qr2) = 0, (13)

which is the frequency equation of torsional vibrations in poroelastic hollow cylinder similar to
that of [10].
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5. Numerical results
Due to presence of dissipative nature of the solids, waves are attenuated. Attenuation presents
some difficulty in the definition of phase velocity. If the dissipation coefficient is non-zero, the
wavenumber, densities are complex. Consequently velocities of dilatational waves and shear
waves are complex valued. Finally, frequency equations will be complex valued and implicit.
Therefore, b is made to be zero so that frequency equation will be real valued and the roots
will be obtained easily that explicitly give phase velocity. Even if b is zero, problem would be
poroelastic in nature as the coefficients A,N,Q,R would not vanish. The frequency equation
Eq. (10) is investigated by introducing the non-dimensional quantities given below:

d1 = 2ρ11
1ρ

, d2 = 2ρ12
1ρ

, d3 = 2ρ22
1ρ

, a4 = 2N
1H

,

g1 = 1ρ11
1ρ

, g2 = 1ρ12
1ρ

, g3 = 1ρ22
1ρ

, b4 = 1N
1H

,

1ρ =1 ρ11 + 2 1ρ12 + 1ρ22, 1H =1 P + 2 1Q+ 1R,

δ = h
L , c = ω

k , Ω = ωh
1c0

g = r2
r1
.

(14)

In the Eq.(14), h is the thickness of the cylinder and L is wavelength, ω is the frequency, 1c0
is reference velocities (1c

2
0 = 1N1ρ

−1),Ω is the non-dimensional frequency. For the numerical
process, two types of composite poroelastic cylinders are considered, namely composite cylinder-
I and composite cylinder-II. Composite cylinder-I consists of the substrate made of sandstone
saturated with water [20] and the coating made of sandstone saturated with kerosene [21]; while
in composite cylinder-II, the substrate is made of sandstone saturated with kerosene and the
coating with sandstone saturated with water. The physical parameters of the said materials
pertaining to Eq. (10) are given in Table 1.

Table 1. Material parameters
Material parameter Composite cylinder-I Composite cylinder-II

d1 0.887 0.891
d2 -0.001 0
d3 0.099 0.125
a4 0.123 0.780
g1 0.887 0.901
g2 0 -0.001
g3 0.123 0.101
b4 0.412 0.780

Employing the non-dimensional quantities in Eq.(10), one obtains an implicit relation between
non-dimensional frequency (Ω) ratio of thickness to wavelength, ratio of radii and initial stress.
The numerical values are depicted in figures 1-2. Variation of non-dimensional frequency as a
function of ratio of thickness to wavelength for composite cylinder-I and composite cylinder-II is
computed in the cases of thin coating and thick coating when initial stress is one. The numerical
results are compared with the published results (when initial stress is zero, Ref. [3]) in the case
of thin coating (g = 1.01) and thick coating (g = 4) for composite cylinder-I and composite
cylinder-II. From figures 1 and 2, it is observed that the frequency values of composite cylinder
II, in general, greater than that of composite cylinder-I. Also, it is observed that the frequency
values lower when initial stress is present in the solid. From the numerical results, one can infer
that the frequency depends on the presence of initial stress.
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Figure 1. Variation of non-dimensional frequency with ratio of thickness to wave length in the
case of thin coating (g = 1.01).

Figure 2. Variation of non-dimensional frequency with ratio of thickness to wave length in the
case of thick coating (g = 4).

6. Conclusion
Torsional vibrations in composite poroelastic solid cylinder in the presence of initial stress are
investigated. The governing equations are formulated from Biot’s incremental deformation
theory. Non-dimensional frequency against ratio of thickness to wavelength is computed for
two composite poroelastic cylinders. From the paper, it is clear that the frequency of waves
depends on the initial stress present in the solid.
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