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Abstract. The possibility of creation of nanostructures on graphene and carbon nanotubes was 

investigated by placing different atoms at a single vacancy of graphene. Using the SIESTA 

software package and a high-throughput computing approach, we have consistently identified 

the binding energy and magnetic properties of 49 elements of the periodic table. The results 

show that all atomic species are stable at room temperature; some elements exhibit interesting 

magnetic behavior. E.g. Ni is not magnetic, whereas Al, Ga and P have magnetic moment. It is 

widely accepted that the rarity of metal-doped graphenes could be explained by the tendency of 

metal atoms to form clusters instead of doping. We analyzed corresponding binding energies 

and proved the opposite statement. 

1.  Introduction 

Carbon nanotubes (CNTs) and graphene are unique materials for nanotechnology. The unique 

properties of these materials can be used in numerous applications, from advanced composite 

materials to artificial muscles and quantum computers [1, 2]. 

There is an evidence of the ability of the transition metals to dope graphene-like systems (graphene, 

onion-like carbon); this process can take place during growth or saturation of existing vacancies, like 

e. g. in carbon nanostructures synthesized using Ni containing catalyst [3]. The presence of substantial 

amounts of Ni impurities was revealed in the purified carbon nanostructures produced with a Ni - 

containing catalyst [4]. In particular, doped graphene and CNT systems were investigated by DFT 

calculations as promising materials for gas sensors [5-7], hydrogen storage devices [8], electrodes of 

supercapacitors [9, 10]. Unfortunately, the spectrum of the used dopants is narrow [11]. This study 

deals with a wide range of atoms (49 atoms). 

Computer modeling of properties of CNTs using density functional theory (DFT) method requires 

very large computer resources. Thus, we investigate doping of graphene sheet as a prototype for the 

CNT. We can expect qualitative agreement between doping of graphene and CNT [12]. 

There are two types of graphene doping: electrical and chemical [13]. In this study, we investigate 

the chemical doping of graphene, where doping occurs via chemical routes, namely substitutional 

doping with heteroatoms. 
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Thus, in this paper, we investigated the possibilities of chemical doping and magnetic moments for 

almost 50 atomic species to find a stable for synthesis, nano structure formation and practical 

applications. 

2.  Method 

We used the spin-polarized density-functional theory (DFT) as implemented in the localized basis-set 

SIESTA method [14, 15]. The generalized gradient approximation of Perdew, Burke, and Ernzernhof 

(PBE) was adopted for the exchange correlation potential [16]. The double zeta plus polarization 

(DZP) basis set was used in the calculations along with the 300 Ryd mesh cut-off for the grid. 

Brillouin zone sampling was made by a Monkhorst–Pack mesh 24 × 24 × 4 k-points. 

A single layer 3×3 supercell with a vacuum width of 12 Å above was constructed. Dopant atoms 

were placed at the center of the single vacancy. These structures were entered into the SIESTA code. 

They were allowed to fully relax according to the atomic positions and cell parameters with an 

accuracy of 0.04 eV/Å for forces and 1.0 GPa for stresses. All atoms were allowed to relax for all 

calculations. 

We calculated the binding energy from the formula: 

)( atomvactotb EEEE   

where Eb is the binding energy of the atom adsorbed on a single vacancy in a graphene sheet. Etot is the 

energy of the doped graphene, Evac is the energy of the reconstructed naked vacancy and Eatom is the 

total energy as an isolated atom. Eb is a complex quantity including redistribution of the electron 

density arising from the adsorption of the isolated atom on the single vacancy of the graphene sheet, as 

well as the relaxation of the stresses being induced by this adsorption. 

3.  Results 

We calculated the binding energy and magnetic moment of 49 atoms shown in figure 1 and figure 2 

respectively. 

 

 

Figure 1. Binding energies Eb of the graphene sheet with atoms adsorbed on 

single vacancies. The x-axis shows the number of the group in the periodic 

table. 

17th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2014) IOP Publishing
Journal of Physics: Conference Series 661 (2015) 012028 doi:10.1088/1742-6596/661/1/012028

2



 

 

 

 

 

 

 

We found that the types of the atom-single vacancy complexes can be divided into two types: 

stable and not stable at room temperature. The type of unstable complexes has the binding energy less 

than 0.4eV. The 0.4eV is roughly the maximum threshold for migration of atoms at room temperature 

[12]. Thus, all atoms are stable at the room temperature. Moreover, according to first-principles 

calculation reported by K.Nakada et. al. [17] they can migrate further along the surface of graphene 

even at the room temperature. The binding energy of a C atom to a graphene sheet with a single 

vacancy is about -14 eV and C also can migrate along the surface of graphene [17]. As for the stability 

at high temperatures, the additional simple estimations are required. The additional calculations may 

be required to check the stability of these species toward oxidation by oxygen of the air. 

 

 

Figure 2. Magnetic moments M of the graphene sheet with atoms adsorbed 

on single vacancies. The x-axis shows the number of the group in the 

periodic table. 

 

There is a slight off-layer position of the dopant atoms, because the doping atom–carbon bond is 

somewhat longer than a carbon–carbon bond. These data are in agreement with other first-principles 

calculations [7, 11]. But for the most stable N and B atoms the in-plane position is observed. 

Magnetic data are in agreement with the calculation reported by A.Krasheninnikov et. al. [11]. 

Surprisingly, Zn, Cd, and even Al, Ga and P atoms are magnetic. This phenomena can be explained by 

the model [11]. 

Figure 3 shows density of states (DOS) for some doped systems. There exist some enhancement in 

the absolute value of DOS in the rows B-doped-Ga-doped and pristine-Ge-doped graphene, but for the 

most of doped graphenes the DOS takes complex form like for the Bi-doped one. 

4.  Discussion 

The character of the doping is expected to be similar between CNT, graphene and also graphite, 

because there is an experimental evidence that CNT have only slightly lower vacancy formation and 

diffusivity energy [18]. For graphite, the interaction between the layers in graphite is so small that 

considering only a single graphene sheet gives only negligible differences [19]. Thus, we can expect 
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that our calculated results for graphene can be used as a reference to consider the candidate dopant 

atoms for CNT and graphite. 

 

 

Figure 3. Density of states for some doped graphenes. The Fermi 

level is at zero energy. 

 

We found that for all atomic species the binding is strong at room temperature. Moreover, most of 

the atoms are allowed to migrate along the surface, so that doped nanostructures could be obtained by 

filling of the existing vacancies. It should be taken into account that in their initial state the empty 

vacancies are saturated by stable O groups, such as ether (C-O-C), carbonyl (C-O), anhydride (O=C-

O-C=O) and other groups [19]. Other synthesis routes could use the doping in plasma process [9], 

chemical vapor deposition (CVD), thermal annealing of graphene oxide, catalytic growth of carbon 

nanostructures, ball milling, etc [20]. The range of dopants used experimentally is quite wide (B, N, S, 

F, Cl, I, Br and Se). According to our calculations (figure 1) the binding energy for these dopants is in 
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a wide range from -14.25 to -3.59 eV, so from this energetical point of view there are no obstacles in 

using of other atomic species as dopant. 

Such heteroatom-doped graphene could be also used as electrode material for supercapacitors, 

providing the binding energy is at least 2.5-4.6 eV (the voltage window of stability for current 

commercial electrolytes) divided by 2. The division by 2 is necessary because the voltage is 

distributed across the two electrodes. These values of binding energy will not allow the voltage to pull 

out the dopant atom from the vacancy of the graphene. 

The doping of graphene with metal atoms has rarely been confirmed experimentally. X. Wang et. 

al. [20] suggest that this is probably because the binding energy of these atoms in graphene vacancy is 

much lower than their cohesive energy. And because of this these atoms tend to form clusters instead 

of doping. But if we compare some of our calculation results with the one available from the literature 

(table 1), we can see that this statement is wrong. As a rule, the binding energy of atoms in cluster 

(Ecluster) increases with the cluster size. We took the maximum value of Ecluster available from the 

literature and gave the corresponding cluster size. This allowed us to consider the worst-case scenario, 

and even in this case, (for the most of metal atoms, except for Au) the doping is energetically more 

favorable than the forming of clusters. We believe that the only prerequisite for the doping is the 

presence of sufficient amount of single vacancies/divacancies, which should be free from oxygen or 

other contaminants. Moreover, as already mentioned above, these metal atoms can migrate along the 

surface of graphene even at the room temperature, so they can reach these vacancies just after the 

adsorption and fill them. And in evidence of our assumptions the possible existence of such doped 

structures was proved experimentally by direct observations of Au – vacancy and Pt – vacancy 

complexes in carbon nanostructures [18]. 

 

Table 1. The calculated binding energies of some metal atoms 

and Si adsorbed on single vacancy of the graphene sheet 

(Edopant) in comparison with the corresponding binding energies 

per atom in clusters (Ecluster). N is the cluster size. 

Element Edopant 

(eV/atom) 

Ecluster 

(eV/atom) 

N Reference 

Al -6.44 -2.95 34 [21] 

Si -9.64 -4.61 16 [22] 

Fe -6.38 -3.67 100 [23] 

Co -6.88 -3.93 200 [24] 

Cu -5.43 -3.35 13 [25] 

Mo -5.79 -5.96 100 [23] 

Pt -3.73 -3.60 15 [26] 

Au -0.63 -3.14 13 [25] 

Pb -2.06 -1.68 160 [27] 

 

5.  Conclusion 

We calculated the binding energy and magnetic moment for 49 atoms embedded in single vacancies in 

a graphene sheet as a prototype for the CNT and graphite. The result shows us that for all of atomic 

species the binding is strong, even at room temperature, and that they exhibit interesting magnetic 

behavior. In particular, all transition-metal atoms and Al, Ga, P are magnetic, whereas Ni, Sc, Pd, Pt, 

Cu, Au are not. We compared our calculated binding energies for metal atoms with the ones for metal 

clusters available in the literature, and concluded that, in contrast to the suggestions of other authors 

[20], the doping is more energetically favorable than clusterforming,. We discussed the experimental 

realization of such systems. 

17th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2014) IOP Publishing
Journal of Physics: Conference Series 661 (2015) 012028 doi:10.1088/1742-6596/661/1/012028

5



 

 

 

 

 

 

References 

[1] De Volder M F L., Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535  

[2] Geim A K and Novoselov K S 2007 Nature Mater. 6 183  

[3] Santos E J G, Ayuela A, Fagan S B, Mendes Filho J, Azevedo D L, Souza Filho A G and 

S´anchez-Portal D 2008 Phys. Rev. B 78 195420  

[4] Ushiro M, Uno K, Fujikawa T, Sato Y, Tohji K, Watari F, Chun W J, Koike Y and Asakura K 

2006 Phys. Rev. B 73 144103  

[5] García-Lastra J M, Mowbray D J, Thygesen K S, Rubio A and Jacobsen K W 2010 Phys. Rev. 

B 81 245429  

[6] Dai J, Yuan J and Giannozzi P 2009 Appl. Phys. Lett. 95 232105  

[7] Ao Z M, Yang J, Li S and Jiang Q 2008 Chem. Phys. Lett. 461 276  

[8] Ao Z M, Jiang Q, Zhang R Q, Tan T T and Li S 2009 J. Appl. Phys. 105 074307  

[9] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K and Choi J W 2011 Nano Lett. 

11 2472  

[10] Paek E, Pak A J, Kweon K E and Hwang G S 2013 J. Phys. Chem. C 117 5610  

[11] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P and Nieminen R M 2009 Phys. Rev. 

Lett. 102 126807  

[12] Ishii A, Yamamoto M, Asano H and Fujiwara K 2008 J. Phys.: Conf. Ser. 100 052087  

[13] Lv R and Terrones M 2012 Mater. Lett. 78 209  

[14] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Sanchez-Portal D 2002 J. 

Phys.: Condens. Matter 14 2745  

[15] Junquera J, Paz O, Sanchez-Portal D and Artacho E 2001 Phys. Rev. B 64 235111  

[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865  

[17] Nakada K and Ishii A 2011 Graphene Simulation vol 1, ed J R Gong (Rijeka: InTech) p 376  

[18] Gan Y, Sun L and Banhart F 2008 Small 4 587  

[19] Carlsson J M, Hanke F, Linic S and Scheffler M 2009 Phys Rev Lett. 102 166104  

[20] Wang X, Sun G Z, Routh P, Kim D H, Huang W and Chen P 2014 Chem. Soc. Rev. 43 7067  

[21] Aguado A and López J M 2009 J. Chem. Phys. 130 064704  

[22] Mahtout S and Belkhir M A 2006 Acta Physica Polonica A 109 685  

[23] Elliott J A, Shibuta Y and Wales D J 2009 Philosophical Magazine 89 3311  

[24] Zhan L, Chen J Z Y, Liu W K and Lai S K 2005 J. Chem. Phys. 122 244707  

[25] Fernández E M, Soler J M, Garzón I L and Balbás L C 2004 Phys. Rev. B 70 165403  

[26] Winczewski Sz and Rybicki J 2011 Comput. Meth. Sci. Technol. 17 75  

[27] Doye J P K and Hendy S C 2003 Eur. Phys. J. D 22 99  

 

 

17th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2014) IOP Publishing
Journal of Physics: Conference Series 661 (2015) 012028 doi:10.1088/1742-6596/661/1/012028

6


