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Abstract. The relativistic pulsar winds are forming the pulsar wind nebulae (PWN) — the
unique extended sources of non-thermal radiation detected in all bands of the electromagnetic
spectrum. High angular resolution imaging of the PWN with modern orbital and ground-based
telescopes makes possible to study the highly non-equilibrium processes in the pulsar wind
plasma. Physical interpretation of the observed dynamic structures in the nebulae requires
modeling of the relativistic pulsar wind. The main mechanism of emission of the magnetized
relativistic pair plasma in the PWN is the synchrotron radiation, and the observed dynamical
structures may be related with a propagation of perturbations of the magnetic field. A kinetic
approach to highly non-equilibrium relativistic pair plasma allows us to evaluate the structure
of the perturbation of the magnetic field propagating transverse to the mean quasi-stationary
magnetic field. We present synchrotron images with the dynamic structures in the PWN
simulated in the relativistic pair plasma with the strong scattering of pairs by the stochastic
magnetic field fluctuation.

1. Introduction
The pulsar wind nebulae (PWN), formed by the relativistic pulsar winds, present one of the most
interesting classes of objects for the high energy astrophysics. The emission of these nebulae is
detected across the electromagnetic spectrum. The conversion mechanism, responsible for the
highly efficient transformation of the energy of a rotating neutron star into the electromagnetic
energy of a PWN is one of the actual problems. High angular resolution observations of the
PWN, possible thanks to modern orbital and ground-based telescopes, allow studying highly
non-equilibrium processes in the pulsar wind plasma. Such observations revealed the presence
of dynamical structures, like jets and wisps, in the Crab nebula[1, 2]. The origin of the high
energy gamma-ray flares, discovered in 2011 by Fermi and AGILE telescopes, is one of the last
hot issues[2–4].

The study of the origin of the observed dynamical structures can help us to answer the
question about their possible relationship with the gamma-ray flares. It also may be useful
for understanding the physics of the processes, involved in the energy conversion mechanism
in the relativistic pair plasma of the PWN. To interpret these structures, the modeling of the
relativistic pulsar wind is required.
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The main mechanism of emission of the magnetized relativistic pair plasma in the PWN is
the synchrotron radiation. Thus, a propagation of perturbations of the magnetic field may be
responsible for the observed dynamical structures.

Applying a kinetic approach to highly non-equilibrium relativistic pair plasma, we can
evaluate the structure of the perturbation of the magnetic field propagating transverse to
the mean quasi-stationary magnetic field. We describe the scheme of obtaining the evolution
equation for the magnetic perturbation propagating in the relativistic pair plasma with the
strong scattering of pairs by the stochastic magnetic field fluctuation. We discuss some solutions
of this equation and present the synchrotron images of their evolution.

2. The evolution equation
2.1. The kinetic model
We consider a local weakly-nonlinear perturbation of the magnetic field, propagating transverse
to the mean quasi-stationary magnetic field B0 in highly non-equilibrium relativistic pair plasma.
Due to locality, one-dimensional analysis is applicable. We assume that B0 ‖ Oz, and that the
perturbation, considered as a linearly polarized wave with electric field E ‖ y and magnetic field
b ‖ z, propagates along the Ox axis. The ’collisional’ regime of the strong scattering of pairs
by the stochastic magnetic field fluctuation is supposed. We introduce the typical frequency of
such ’collisions’ (scatterings) ν and the gyrofrequency Ω = eB0/mcγ. Here e is the positron
charge, m – the mass of a particle, c – the light velocity, γ – the Lorentz-factor of a particle.
The typical frequencies of the processes under consideration ω are supposed to be small in
comparison with ν. The frequency of scatterings by the magnetic field fluctuation may not
exceed the gyrofrequency. We write for the frequencies:

ω � ν ≤ Ω, ν = aΩ (1)

We use the kinetic approach and seek the distribution functions of positrons and electrons in
the form of fα = f0 + f̃α, where f0 is the isotropic part of the distribution function, α = p, e.
The subscripts ’p’ and ’e’ refer to positrons and electrons, respectively. The collision operator
is taken in the form of the relaxation time approximation

−ν (f − f0) = −νf̃ .

The system of kinetic equations for the components of pair plasma takes the form:

∂tfp + vx∂xfp − Ω · Ôfp + e

(
Ey −

1

c
vxb

)
∂pyfp +

e

c
vyb∂pxfp = −ν1f̃p + ν2f̃e (2)

∂tfe + vx∂xfe + Ω · Ôfe − e
(
Ey −

1

c
vxb

)
∂pyfp −

e

c
vyb∂pxfp = −ν2f̃e + ν1f̃p. (3)

Here Ô =
[
p× ∂p

]
. The collisional operators are taken in the symmetric with respect to the

sorts of the particles form.

2.2. The derivation of the evolution equation
In this subsection we give a brief review of the derivation of the evolution equation, performed
in [5].

The solution of the kinetic system (2)—(3) is obtained in two stages. At the first stage,
the equations are linearized (the terms with nonlinear combinations of fields are neglected) and
solved using the Fourier transforms. This allows to obtain the dispersion equation and the terms
δf1p,e, δf

2
p,e, δf

3
p,e of the linear variation of the distribution function.
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At the second stage, we solve the system using the successive approximation method, taking
into account the nonlinear terms. In the first approximation again only linear terms are left.
The equations are solved by building the Green functions. In the second approximation the
nonlinear terms are considered and the same procedure is performed. This allows to obtain the
nonlinear variation of the distribution function δf4p,e.

The current density, defined by the variations of the distribution functions, could be derived
as jy =

∑
i,α
eα
∫
vyδf

i
αd

3p. This result should be substituted to the Maxwell equation for rotB.

Thus, we get the evolution equation, which takes the form of the Korteweg—de Vries—Burgers
equation:

∂τh+ ∂ξh+ ∂3ξh+ λh∂ξh = χ∂2ξh (4)

Here h = b/B0; τ ,ξ — the dimensionless temporal and spatial coordinates. The coefficients of
this equation are expressed via the integrals of the form of

∑
α

∫
vyδf

i
αd

3p.

2.3. The initial value problem
The equation (4) has an analytical solution only in important special cases. One of such cases
is realized when ν � Ω: in this limit one can neglect the term ∼ ∂2ξh describing the dissipation.
Thus, the equation will take the Korteweg—de Vries form. One of the Korteweg—de Vries
equation solutions is a soliton — a long lived solitary wave, propagating without changing of its
shape:

h (ξ, τ) =
h0

cosh2 [w−1 (ξ − (1 + 4w−2) τ)] .
(5)

This solution has an important parameter — the soliton width:

w =
√

12/λh0 (6)

We emphasize that the derivation of the evolution equation is performed for an arbitrary
isotropic part of the distribution function f0. In the further modeling of the synchrotron images
of the local magnetic field structures in the relativistic pair plasma of the Crab nebula we take
f0 in the form of a broken power-law. We choose the parameters of f0 resembling the values
which could be locally estimated from the spectral energy distribution of the average emission
of the Crab nebula, presented in Figure 2 of [2]. We take the breaking Lorentz-factor γb = 106,
and the spectral indices p1 = 1.35 and p2 = 2.15 at low and high energies, respectively. The
induction of the mean quasi-stationary magnetic field is taken, according to observations, to be
equal to 200 µG. The concentration of particles is estimated from the assumption P ≈ B2

0/8π.
In Figure 1 we present the results of the numerical solution of the initial value problem for

the equation (4) for the case of significant damping. The amplitude and the spatial scale of
the initial perturbation of the magnetic field are matching the solitary peaks emerging in the
simulation of the cyclotron instability by Spitkovsky & Arons [6] (see their Figure 2). We use
the Gaussian form for the initial perturbation, and take the amplitude b/B0 = 0.35 and the
standard deviation to be equal to 1.4 · 1016 cm. We suppose it to propagate with the velocity
u = c/3.

In Figure 1(a) we present the results for the limit ν = Ω. One can see that the amplitude of
the propagating perturbation decreases, and its width increases. In addition, the perturbation
decelerates. This behaviour is similar to the specific relations between amplitudes, widths and
velocities of the soliton solutions. The decreasing of the amplitude is quite slow: ∼10% from the
initial value on the timescale of a month. The perturbation remains to be a relatively narrow
peak (width of the order of a few units of 1016 cm) for tens of days. On longer timescales a ’tail’
emerges behind the peak likely due to damping.
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Figure 1. The evolution of the initial perturbation (Gaussian with the amplitude b/B0 = 0.35
and the standard deviation equal to 1.4 · 1016 cm) in case of (a): ν = Ω; (b): ν = 0.1Ω. The
perturbation at various moments of time is presented. The list of the corresponding moments
of time is shown in Table 1. The variable x = ξ − Uτ , where τ ,ξ — the dimensionless time and
coordinate, U — the dimensionless velocity of the initial perturbation. The unit length is equal
to 2.8 · 1015 cm in (a) and 8.1 · 1014 cm in (b).

The results shown in Figure 1(b) correspond to the frequency ν = 0.1Ω. Here the dispersion
term ∼ ∂3ξh dominates over the damping term, and one can see the formation of narrow peaks.

The spatial scale of these peaks is of the order of a few units of 1015 cm. This process is similar
to the decay of the initial perturbation into solitons, which emerges in the collisionless case. In
the same time, one can see clear manifestations of the damping.

The angular resolution of the Hubble Space Telescope ∼ 0.1′′ allows us to resolve an object
of a size larger than 3 · 1015 cm in the Crab nebula. The localized perturbations of the magnetic
field result in synchrotron features, which could be detected as bright wisps and filaments.
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Table 1. The time moments of the evolution, shown in Figure 1, in units of 107 sec

Figure t1 t2 t3 t4 t5 t6 t7

1(a) 0.0 0.37 1.03 2.06 4.11 6.17 8.23
1(b) 0.0 0.091 0.181 0.272 0.543 1.21 2.42

3. The synchrotron images
The main mechanism of emission of the magnetized relativistic pair plasma of the pulsar wind
nebula is the synchrotron radiation. Thus, the propagating perturbations of the magnetic field
could be responsible for the observed dynamical structures in the nebulae.

Figure 2. The synchrotron images of the evolution of the initial perturbation presented in
Figure 1(b): the spatial distribution of the intensity (normalized to the background value).
The images correspond to the moments of time in the bottom row of Table 1. The size of the
simulated box is 2.6 · 1017 cm. The frame moves with the velocity of the initial perturbation.
The wavelength of emission λ = 555 nm (corresponding photon energy E = 2.23 eV).

The solution of the initial value problem for the evolution equation (4) is a spatial distribution
of the magnetic field induction. One has to evaluate the Stokes parameters for this distribution
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to get the coordinate distribution of the intensity of emission and the parameters describing the
polarization.

The synchrotron images of the evolution of the initial perturbation shown in Figure 1(b) are
presented in Figure 2. The simulated box moves with the velocity of the initial perturbation.

One can see the formation of thin bright stripes, which correspond to narrow peaks, shown
in Figure 1(b). These stripes have widths ∼ 1015 cm. For the leading stripes the significant
enhancement of the calculated emission intensity over the background level holds on a timescale
of tens of days.

4. Conclusions
In this paper we discuss the modeling of the dynamical structures in the highly-nonequilibrium
relativistic pair plasma of the pulsar wind nebulae. We describe a kinetic model of a propagation
of a weakly-nonlinear perturbation of the magnetic field transverse to the mean quasi-stationary
magnetic field. The regime of the strong scattering of pairs by the stochastic magnetic field
fluctuation is considered. The locality of the perturbation is supposed, thus, the one-dimensional
analysis is performed. We review the procedure of derivation of the evolution equation from the
kinetic equations for the pair plasma components. The obtained evolution equation has the form
of the Korteweg—de Vries—Burgers (KdVB) equation.

We solve the initial value problem for the KdVB equation numerically, taking a localized
perturbation of the magnetic field as the initial condition. We show that for the limit ν = Ω the
perturbation retains the character of a single peak for a long time, but its amplitude decreases
due to dissipation. The perturbation decelerates and broadens, and a long ’tail’ emerges behind
it likely due to damping. For the case of ν = 0.1Ω, when the dispersion dominates over the
dissipation, the changes in the shape are more substantial: the groups of solitary peaks are
formed. They have the spatial scale of the order of a few units of 1015 cm. For this case we
evaluate the synchrotron emission intensity at the obtained magnetic field distribution and build
the images, representing the coordinate distribution of the intensity. In these images one can
see bright thin stripes, corresponding to the peaks mentioned above. The widths of these stripes
are of the order of the scale which could be resolved by the Hubble Space Telescope in the
Crab nebula (3 · 1015 cm). For the leading stripes the significant enhancement of the calculated
synchrotron emission intensity over the background level holds on a timescale of tens of days.

Thus, the perturbations described by the evolution equation (4) can be responsible for the
observed dynamical structures, like wisps in the Crab nebula. Also, it can be shown that the
characteristic spatial scales of the derived structures are sensitive to the pressure of the pair
plasma. This can open up a prospective of an observational constraining of the distribution
function parameters and studying of the relativistic pairs gas properties.
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