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Abstract. Motivation for this paper is the creation of a new kind of (vibration) kinetic energy 
harvester systems that can effectively transfer environmental mechanical vibrations into 
electrical energy over a wider frequency bandwidth than conventional devices. This paper 
presents a potential improvement in the 1DoF vibration transducer class and examining 
therefore analytically the behavior of such systems using strong nonlinear springs. Then a new 
2DoF class of vibration transducer is presented having a strong nonlinear characteristic which 
is well suited for autoparametric resonance vibrations. 

1.  Introduction 
Energy Harvesting is a technology for capturing non-electrical energy from ambient energy sources, 
converting it into electrical energy and storing it to power wireless electronic devices. The process of 
capturing mechanical energy such as shocks and vibrations is a particular field of energy harvesting 
requiring specific types of energy harvesting devices, so called kinetic energy harvesters.  
Conventional, first generation types of such transducers can harvest mechanical vibration energy 
effectively only in a narrow frequency window. Over time many different types of systems have been 
analytically characterized, designed and tested. Most of these systems show only small improvements 
with respect to their bandwidth. None of those systems can transfer mechanical vibration power into 
electrical energy over a wide frequency band. The main requirements of such a kinetic harvester 
system shall be a simple mechanical structure as well as a wide vibration frequency range for which 
the system can transfer very effectively environmental mechanical vibrations into electrical energy.  

 Chapters 2.  and 3.  deal with 1DoF vibration harvester systems using nonlinear springs. This idea 
has been proposed recently, by using springs with nonlinear hardening or softening characteristics; 
some propositions made in [1] and [2] lead to the duffing equation (cubic displacement of path 
proportional to the restoring force). Based on the duffing oscillator we create in these two chapters, an 
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analytical model and measure its accuracy using numerical solutions. Then we explore the behavior of 
such 1DoF energy harvester systems by experimenting with larger nonlinear of springs. 

In chapters 4.  and 5.  we deal with 2DoF vibration harvester systems and propose a new kind of 
vibration energy harvester, capable of autoparametric resonance. A dimensionless system is modeled 
and numerical solutions show the stability and energy transfer of such a transducer system. 

2.  Investigation in 1DoF Systems 
In this chapter we deal with analytical and numerical simulations of vibration energy harvesters with 
one single degree of freedom (1DoF). The inertia of the oscillating proof mass results in a relative 
displacement when the frame experiences acceleration. Once the proof mass is displaced from its 
equilibrium position, the restoring force of the suspension starts to act on the proof mass and 
oscillations occur. The oscillations of the proof mass can be damped by a suitable transducer 
mechanism and thus kinetic energy is converted into electrical energy [1]. 
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Figure 1. System model elements: a nonlinear 
oscillator with mass m1, a damping factor d1, a 
linear 𝑘𝑘1 and a nonlinear spring 𝑘𝑘𝑛𝑛. An 
external basepoint excited harmonic force 
with amplitude 𝑦𝑦0(𝑡𝑡); electromagnetic 
coupling elements: inductance L, resistive 
load 𝑅𝑅. System coordinates: mechanical 
displacement 𝑦𝑦(𝑡𝑡) of mass 𝑚𝑚, current 𝑖𝑖(𝑡𝑡) 
through the inductor, and the voltage 𝑣𝑣(𝑡𝑡) 
generated with the coupling factor ɛ.  

2.1.  Lumped parameter model of the electromagnetic 1DoF system 
The model comprises a mechanical and an electrical domain which interacts with each other through a 
coupling element 𝜀𝜀, see also system elements in Figure 1. System parameters are the oscillating 
mass 𝑚𝑚, the springs 𝑘𝑘1 and 𝑘𝑘𝑛𝑛 with the degree of nonlinearity 𝑛𝑛 and the damping 𝑑𝑑. The amplitude of 
the ambient vibration is 𝐴𝐴 and its frequency 𝜔𝜔; assuming the system is excited by a harmonic function: 

  𝑦̈𝑦0 = 𝑑𝑑2

𝑑𝑑𝑡𝑡2
(𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝜔𝜔) = −𝐴𝐴𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) (1) 

The equation of motion for such a system is given by 
  −𝑚𝑚 𝑔𝑔 − 𝑘𝑘1(𝑦𝑦1 −  𝑦𝑦0) − 𝑘𝑘𝑛𝑛(𝑦𝑦1 −  𝑦𝑦0)𝑛𝑛 − 𝑑𝑑 (𝑦̇𝑦1 − 𝑦̇𝑦0) + 𝜀𝜀 𝑖𝑖 = 𝑚𝑚 𝑦̈𝑦1 (2) 

Changing equation by adding −𝑚𝑚 𝑦̈𝑦0 and substituting resulting differences with y, 𝑦̇𝑦 and 𝑦̈𝑦, 
e.g. 𝑦𝑦 = 𝑦𝑦1 −  𝑦𝑦0 + 𝑐𝑐0, 𝑦̇𝑦 = 𝑦̇𝑦1 − 𝑦̇𝑦0, 𝑦̈𝑦 = 𝑦̈𝑦1 − 𝑦̈𝑦0 we obtain a DE (of accelerations): 

  𝑦̈𝑦 + 𝑑𝑑
𝑚𝑚
𝑦̇𝑦 + 𝑘𝑘1

𝑚𝑚
𝑦𝑦 + 𝑘𝑘𝑛𝑛

𝑚𝑚
𝑦𝑦𝑛𝑛 + 𝜀𝜀

𝑚𝑚
 𝑖𝑖 =  𝑦̈𝑦0 = −𝐴𝐴𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) (3) 

Introducing the coil to obtain a voltage for an electrical resistive load, Faraday’s law of induction 
needs to be applied (see also [1] for a more detailed treatment); equation for the generated voltage 
(𝑅𝑅 = 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙): 

  𝑣𝑣(𝑡𝑡) = 𝜀𝜀 𝑦̇𝑦 = 𝐿𝐿 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑅𝑅 𝑖𝑖 (4) 

The set of equation (3) and (4) models the system of motion. The parameter 𝜀𝜀 is the 
electromagnetic coupling constant (transduction factor) [𝑉𝑉𝑉𝑉/𝑚𝑚], and is measured for the 
electromagnetic current i [𝐴𝐴] that is generated upon velocity of deflection y, assuming having resistive 
load R in the electrical system domain. To obtain a more general solution, the equations of motion are 
written in the dimensionless form: 

  𝑢𝑢′′ + 2𝛿𝛿𝑢𝑢′ + 𝑢𝑢 + 𝛽𝛽𝑢𝑢𝑛𝑛 + 𝜅𝜅𝜅𝜅 𝜁𝜁 = −𝛺𝛺2 𝑐𝑐𝑐𝑐𝑐𝑐(𝛺𝛺𝛺𝛺) (5) 
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  𝜅𝜅 𝑢𝑢′ = 𝜁𝜁′ + 𝜆𝜆 𝜁𝜁 (6) 
Using following parameters for nondimensionalization: 

  𝑦𝑦0 = 𝐴𝐴; 𝑖𝑖0 = 𝜀𝜀 𝑦𝑦0
𝑅𝑅

;𝜔𝜔0
2 = 𝑘𝑘1

𝑚𝑚
;𝛽𝛽 = 𝑘𝑘𝑛𝑛

𝑘𝑘1
 𝑦𝑦02; 𝜏𝜏 = 𝑡𝑡 𝜔𝜔0; 𝛿𝛿 = 𝑑𝑑

2 𝑚𝑚 𝜔𝜔0
;𝛺𝛺 = 𝜔𝜔

𝜔𝜔0
; 𝜅𝜅 = 𝜀𝜀2

𝐿𝐿 𝑑𝑑 𝜔𝜔0
; 𝜆𝜆 = 𝑅𝑅

𝐿𝐿 𝜔𝜔0
; (7a) 

  path 𝑢𝑢(𝜏𝜏) = 𝑦𝑦(𝑡𝑡)
𝑦𝑦0

 and current 𝜁𝜁(𝜏𝜏) = 𝑖𝑖(𝑡𝑡)
𝑖𝑖0

 (7b) 

In the equation system of (5) and (6), 𝛿𝛿 is the damping ratio and 𝛽𝛽 the nonlinearity constant 
together with the exponent n in 𝑢𝑢𝑛𝑛 indicating the system’s degree of nonlinearity. A well-known case 
with n=3 describes the duffing oscillator. The parameter 𝜅𝜅 is called transduction factor (and assumed 
to be constant in this analytical treatment) and the load matching constant 𝜆𝜆. In case of resistive load 
matching, the resistance is equal to the apparent impedance of the inductance: 

  𝜆𝜆 = |𝑍𝑍(𝐿𝐿)|
𝐿𝐿 𝜔𝜔0

=  𝜔𝜔 𝐿𝐿
𝐿𝐿 𝜔𝜔0

= 𝛺𝛺 (8) 

For a nonlinear system it is often sufficient to use a limited set of harmonics to obtain a sufficient 
accurate solution for the system, see also [5]; here only the fundamental frequency is considered: 

  𝑢𝑢(𝜏𝜏) = 𝑢𝑢𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐(𝛺𝛺𝛺𝛺) + 𝑢𝑢𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝛺𝛺) (9a) 

 𝜁𝜁(𝜏𝜏) = 𝜁𝜁𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐(𝛺𝛺𝛺𝛺) + 𝜁𝜁𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝛺𝛺) (9b) 
The ansatzfunction (9a) is inserted in equation (6) and its analytical solution is obtained: 

  𝜁𝜁(𝜏𝜏) = 𝑒𝑒−𝜆𝜆𝜆𝜆𝑐𝑐1 −
𝛺𝛺

𝜆𝜆2+𝛺𝛺2
 �(𝑢𝑢𝑆𝑆𝜆𝜆 + 𝑢𝑢𝐶𝐶𝛺𝛺) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜏𝜏𝜏𝜏) + (−𝑢𝑢𝐶𝐶𝜆𝜆 + 𝑢𝑢𝑆𝑆𝛺𝛺) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏𝜏𝜏)� (10) 

Here only the nonhomogeneous solution is of interest, as for large 𝜏𝜏 only this solution will remain. 
Inserting again (9a) and its derivative in (10) yield the relation between displacement and voltage: 

  𝜁𝜁(𝜏𝜏) = 𝜆𝜆
𝜆𝜆2+𝛺𝛺2

𝑢𝑢′ − 𝛺𝛺2

𝜆𝜆2+𝛺𝛺2
𝑢𝑢 (11) 

With this relation, equation (5) can be rewritten: 
  𝑢𝑢′′ + 2𝛿𝛿𝑢𝑢′ + 𝑢𝑢 + 𝛽𝛽𝑢𝑢𝑛𝑛 + 𝜅𝜅𝜆𝜆2

𝜆𝜆2+𝛺𝛺2
𝑢𝑢′�������

𝒅𝒅𝑬𝑬𝑬𝑬

− 𝜅𝜅𝜅𝜅𝛺𝛺2

𝜆𝜆2+𝛺𝛺2
𝑢𝑢�������

𝒌𝒌𝑬𝑬𝑬𝑬

= −𝛺𝛺2 𝑐𝑐𝑐𝑐𝑐𝑐(𝛺𝛺𝛺𝛺) (12) 

Energy harvesters are typically characterized by the three different parameters, the open-circuit 
voltage 𝜆𝜆 → 0 (𝑑𝑑𝐸𝐸𝐸𝐸 = 0,𝑘𝑘𝐸𝐸𝐸𝐸 = 0 ) the short circuit current 𝜆𝜆 → ∞ (𝑑𝑑𝐸𝐸𝐸𝐸 = 𝜅𝜅,𝑘𝑘𝐸𝐸𝐸𝐸 = 0 ) and the 
maximum power output (load matching) 𝜆𝜆 → Ω (𝑑𝑑𝐸𝐸𝐸𝐸 = 𝜅𝜅 2⁄ ,𝑘𝑘𝐸𝐸𝐸𝐸 = −𝜅𝜅Ω 2⁄ ).  These three load cases 
correspond to the terms of 𝑑𝑑𝐸𝐸𝐸𝐸, 𝑘𝑘𝐸𝐸𝐸𝐸 in equation (12). In theory such considerations are reasonable, as 
for many electrical circuits load matching is used. For electromagnetic harvesters, the influence of the 
reactance is below 10% of the resistance and optimal load is obtained of adding coil resistance plus the 
quadratic transduction factor divided by the parasitic mechanical damping 𝑑𝑑, see also [1].   

3.  Comparison of frequency response for electromagnetic 1DoF vibration harvesters with 
different degrees of nonlinearity  
Equation (12) gives a general relation for basepoint excited (nonlinear) electromagnetic harvester 
systems; if 𝛽𝛽 is zero, no nonlinear spring is present and we deal with a linear transducer system. If 𝛽𝛽 is 
nonzero, we examine nonlinear springs with nonlinearity exponent 𝑛𝑛 = 3 (duffing case) and 𝑛𝑛 = 5.  

3.1.  Frequency response with nonlinear spring n=3 (duffing case) 
A sufficient accurate approximation for equation (12) can be obtained using the harmonic balance 
(HB) method. As already stated, we neglect the influence of higher harmonics and assume the 
ansatzfunction (9a); the cubic term 𝑢𝑢3 is approximated by: 
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  𝑢𝑢3 = 3
4

 ≈ 3
4

(𝑢𝑢𝐶𝐶2 + 𝑢𝑢𝑆𝑆2) 𝑢𝑢 = 3
4

 𝑢𝑢�2𝑢𝑢 (13) 

Two linear equations for sine and cosine balance term are formed following the HB procedure. An 
implicit relation between displacement amplitude and excitation frequency can here be obtained: 

  𝑢𝑢�2 ��−𝛺𝛺2 + 1 + 3
4
𝛽𝛽 𝑢𝑢�2 − 𝜅𝜅𝜅𝜅𝛺𝛺2

𝜆𝜆2+𝛺𝛺2
�
2

+ �2𝛿𝛿 𝛺𝛺 + 𝜅𝜅𝜆𝜆2

𝜆𝜆2+𝛺𝛺2
�
2
� = 1 (14) 

As proposed by Neiss et al in [4], we also limit our investigation of the maximum power output to 
weakly coupled systems, i.e. 𝜅𝜅 ≤ 4𝛿𝛿Ω and follow also by using a quadratic approximation of the 
frequency around the linear resonance frequency by applying:  

 �2𝛿𝛿 𝛺𝛺 +
𝜅𝜅
2�

2
≈ �𝛿𝛿 +

𝜅𝜅
4�  (𝜅𝜅 + 4 𝛿𝛿 𝛺𝛺2)  (15) 

By therefore replacing the damping and stiffness and inserting (15) into (14) we obtain: 
 

  𝑢𝑢�2 ��−𝛺𝛺2 + 1 + 3
4
𝛽𝛽 𝑢𝑢�2 − 𝜅𝜅

2
�
2

+ �𝛿𝛿 + 𝜅𝜅
4
�  (𝜅𝜅 + 4 𝛿𝛿 𝛺𝛺2)� = 1 (16) 

This simplified implicit frequency response is now a quadratic polynomial which can be elegantly 
solved for Ω2: 

   𝛺𝛺1,2 = 1
2 
�3 𝑢𝑢�2𝛽𝛽 + 4 − 8𝛿𝛿2 − 2𝜅𝜅 − 𝛿𝛿𝛿𝛿 ± 2

𝑢𝑢�2
�4 𝑢𝑢�2 − 3𝑢𝑢�6𝛽𝛽𝛽𝛽(4𝛿𝛿 + 𝜅𝜅) + 𝑢𝑢�4(4𝛿𝛿 + 𝜅𝜅) �4𝛿𝛿(−1 + 𝛿𝛿2) +

�−1 + 𝛿𝛿(2 + 𝛿𝛿)�𝜅𝜅��
1/2
�
1/2

  
(17) 

 

 

 
Figure 2. Exemplary frequency responses linear 
(grey), softening (blue) and hardening (green) using 
numerical simulation (solid lines) and analytical 
solution (dashed lines). 

 Figure 3. Exemplary frequency responses linear 
(grey), softening (blue) and hardening (green) using 
numerical simulation (solid lines) and analytical 
solution (dashed lines). 

A selection for the analytic solution from equation (17) along with the numerical solutions obtained 
by solving the coupled DE system in (5) and (6) is shown in Figure 2. The solution errors between 
analytical and numerical analysis show that the backbone curve deviation is small (in the range of ca. 
<1% over a large parameter range). The amplification errors for the analytical solutions are larger, best 
matches at ca. 3%. Jump-up and jump-down point identification, maximum power output and 
bandwith calculations are not presented, as the scope of the paper is not limited to this special 
nonlinear case. 

𝛽𝛽
=
−

0.
00

2 

𝛽𝛽
=

0 𝛽𝛽
=

0.
00

3 

𝛽𝛽
=

0.
00

3 

𝛽𝛽
=

0 

𝛽𝛽
=
−

0.
00

01
 

𝛿𝛿 = 𝜅𝜅 = 0.03 𝛿𝛿 = 𝜅𝜅 = 0.03 
𝑭𝑭𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ~ 𝒚𝒚𝟑𝟑 𝑭𝑭𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ~ 𝒚𝒚𝟓𝟓 
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3.2.  Frequency response with nonlinear spring n=5 
As stated for the duffing case (n=3) we approximate equation (12) again by using the harmonic 
balance (HB) method and neglecting again the influence of higher harmonics assuming the 
ansatzfunction (9a); the stiffness term with 𝑢𝑢5 is approximated by: 

  𝑢𝑢5 ≈ 5
8
𝑢𝑢�4 𝑢𝑢 (18) 

Using again the same approach as presented in chapter 3.1.  leads to the analytical simplified 
implicit frequency response; its quadratic solution for Ω yields:  
 

 𝛺𝛺1,2 = 1
2
�5𝑢𝑢0

4𝛽𝛽
2

− 2�−2 + 𝜅𝜅 + 𝛿𝛿(4𝛿𝛿 + 𝜅𝜅)� ± √2
𝑢𝑢02

�𝑢𝑢02 �8 + 𝑢𝑢02(4𝛿𝛿 + 𝜅𝜅)�−2𝜅𝜅 + 𝛿𝛿(−8 − 5𝑢𝑢04𝛽𝛽 + 8𝛿𝛿2 +

2(2 + 𝛿𝛿)𝜅𝜅)���
1/2
�
1/2 

 
(19) 

Figure 3 shows exemplary frequency responses for the analytic solution from equation (19) 
together with the numerical solution of the coupled DE system. For the hardening case, numerical 
simulation show that the displacement amplitude is growing indefinitely, until it reaches so large 
amplitudes that the system becomes instable (Ω > 148 @ 𝑢𝑢� ≈ 150) and the jump-down phenomenon 
occurs therefore very late; the analytical solution shows no jump-down phenomenon, as the amplitude 
reaches a complex solution for frequencies Ω > 1. Furthermore in the analytical solution no such 
amplitude amplification can be observed. It is important to note for all numerical simulations that the 
generated basepoint excitation is a chirp signal that is slowly ramped up for hardening systems, e.g. 
𝛽𝛽 > 0 and slowly ramped down for softening systems (𝛽𝛽 < 0); if a quasi-static excitation is used for 
each frequency (always with initial conditions set to zero), no large amplitude amplifications can be 
observed. 

The analytical frequency response grows with a higher power. For the backbone deviation in the 𝑢𝑢5 
solution is ca. 3%; the amplification deviation is larger, best matches at ca. 5%. These mismatches can 
be attributed to the fact of having only the fundamental harmonics introduced for an acceptable 
manageable analytical expression. Making a spring with 𝑢𝑢3 is feasible, see also [1]; it needs further 
investigation whether a spring with 𝑢𝑢5 can be realized without introducing too much of damping! 

4.  Investigation in 2DoF Systems 
In this chapter we deal with models and numerical simulations of vibration energy harvesters with two 
degrees of freedom (2DoF). Such systems are capable of autoparametric resonances, e.g. they stabilize 
their frequency response in a limited window of excitation, see also  [6] and [7]. Figure 4 shows one 
configuration of a new basepoint excited vibration harvester system. The corresponding electrical 
network is deliberately drawn disconnected, as the transducer can be placed between 𝑦𝑦0and 𝑦𝑦1 or 
𝑦𝑦0and 𝑦𝑦2 or 𝑦𝑦1and 𝑦𝑦2.  
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Figure 4. Lumped parameter 
model of the electromagnetic 
2DoF vibration energy 
harvester; the electrical 
network showing the 
transducer unit can be placed 
(in theory) at three locations: 
between 𝑦𝑦0and 𝑦𝑦1 or 𝑦𝑦0 and 
𝑦𝑦2 or 𝑦𝑦1and 𝑦𝑦2. On the right 
hand side the cut free system. 

Mass 𝑚𝑚2 is free flying, but bounded within the region of ℎ21 + ℎ22. If the drawn spring 𝑘𝑘21,22 
elements are present, mass 𝑚𝑚2 has soft impact, otherwise hard impact behavior. The mechanical 
damping elements 𝑑𝑑21,22 are always present. The input vibration is 𝑦𝑦0 and like in the 1DoF system, a 
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linear and also a nonlinear spring might be present, plus the unwanted mechanical dampings 𝑑𝑑1 plus 
the sketchily drawn system wall damping 𝑑𝑑2. 

4.1.  Lumped parameter model of the electromagnetic 2DoF system 
The lumped parameter model is shown in Figure 4. The proposed harvester can be thought as 2DoF 
upgrade of the 1DoF model shown in Figure 1 using the same nomenclature as already introduced in 
chapter 2.  (with additionally on top of mass 𝑚𝑚1 a second bounded in ℎ21 + ℎ22 free flying mass 𝑚𝑚2). 
Following the same nondimensionalization procedure as shown in chapter 2.1.  will lead to the three 
dimensionless coupled differential equations for the system dynamic: 
 𝑢𝑢1′′ +

𝑔𝑔
𝑦𝑦0𝜔𝜔02

− 𝑠𝑠𝑎𝑎(𝜆𝜆𝐾𝐾1𝛥𝛥𝛥𝛥 + 2𝛿𝛿𝜆𝜆𝐷𝐷1𝛥𝛥𝑢𝑢′) − 𝑠𝑠𝑏𝑏(𝜆𝜆𝐾𝐾2𝛥𝛥𝛥𝛥 + 2𝛿𝛿𝜆𝜆𝐷𝐷2𝛥𝛥𝑢𝑢′) − 𝑠𝑠𝑐𝑐(𝜆𝜆𝐾𝐾1(𝛥𝛥𝛥𝛥 − 𝜌𝜌) + 2𝛿𝛿𝜆𝜆𝐷𝐷1𝛥𝛥𝑢𝑢′)       =  −𝛬𝛬(𝜏𝜏) (20) 

 𝑢𝑢2′′ +
𝜆𝜆𝑀𝑀 𝑔𝑔
𝑦𝑦0𝜔𝜔02

+ 𝑠𝑠𝑎𝑎(𝜆𝜆𝐾𝐾1𝛥𝛥𝛥𝛥 + 2𝛿𝛿𝜆𝜆𝐷𝐷1𝛥𝛥𝛥𝛥′) + 𝑠𝑠𝑏𝑏(𝜆𝜆𝐾𝐾2𝛥𝛥𝛥𝛥 + 2𝛿𝛿𝜆𝜆𝐷𝐷2𝛥𝛥𝛥𝛥′) + 𝑠𝑠𝑐𝑐(𝜆𝜆𝐾𝐾1(𝛥𝛥𝛥𝛥 − 𝜌𝜌) + 2𝛿𝛿𝜆𝜆𝐷𝐷1𝛥𝛥𝑢𝑢′) + 𝜅𝜅𝜆𝜆𝐸𝐸  𝜁𝜁 = 0 (21) 

 𝜅𝜅 𝑢𝑢′ = 𝜁𝜁′ + 𝜆𝜆𝐸𝐸  𝜁𝜁 (22) 
with following supplementary equations for (21) and (20): 

 𝛥𝛥𝛥𝛥 = 𝑢𝑢2 − 𝑢𝑢1;  𝛥𝛥𝑢𝑢′ = 𝑢𝑢2′ − 𝑢𝑢1′ ;  𝑠𝑠𝑎𝑎 = 𝜎𝜎(−𝛥𝛥𝛥𝛥); 𝑠𝑠𝑐𝑐 = 𝜎𝜎(𝛥𝛥𝛥𝛥 − 𝜌𝜌); 𝑠𝑠𝑏𝑏 =  1 − 𝑠𝑠𝑎𝑎 − 𝑠𝑠𝑐𝑐 (23) 
and with the inserted basepoint excitation 𝐴𝐴 cos(Ω𝜏𝜏) the stimulation Λ can be written as: 

 𝛬𝛬(𝜏𝜏) = 𝑢𝑢1 + 𝛽𝛽 𝑢𝑢1𝑛𝑛 − 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐(𝛺𝛺𝛺𝛺) + 2𝛿𝛿(𝑢𝑢1′ + 𝐴𝐴 𝛺𝛺 𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝛺𝛺))  (24) 
The activation of according stiffness and damping depending on freefall (𝑠𝑠𝑏𝑏), lower impact (𝑠𝑠𝑎𝑎) 

and upper impact (𝑠𝑠𝑐𝑐) are switched on and off via only path depending Heaviside functions. 

5.  Comparison of frequency response for electromagnetic 2DoF vibration harvesters  
Frequency response of the three dimensionless coupled differential equations (20), (21) and (22) are 
depicted in Figure 5, using numerical simulation tools. The nonlinearity of the spring 𝑘𝑘1𝑛𝑛 is cubic 
(using a weak nonlinearity with 𝛽𝛽 = 0.03), e.g. exponent 𝑛𝑛 = 3 in the stimulation function Λ.The 
springs 𝑘𝑘21 = 𝑘𝑘22 are linear, the damping for impact 𝑑𝑑21 = 𝑑𝑑22 kept also equal (see also Figure 4), 
resulting in dimensionless constants 𝜆𝜆𝐾𝐾1 = 𝜆𝜆𝐾𝐾 = 20 and 𝜆𝜆𝐷𝐷1 = 104. The free fall damping 𝜆𝜆𝐷𝐷2 = 1 is 
weak (free fall stiffness 𝜆𝜆𝐾𝐾2 = 0) and the proportional factor for masses 𝑚𝑚1 and 𝑚𝑚2 is set to 𝜆𝜆𝑀𝑀 =
1 3⁄ . In the electrical domain the dimensionless constants are the transduction factor 𝜅𝜅 (also assumed 
to be constant) and the resistive load is assumed to be weak 𝜆𝜆𝐸𝐸 = 0.05. For the upper mass 𝑚𝑚2 
bounded path limits are set to ℎ21=0 and ℎ22 dimensionless transformed constant set large to 𝜌𝜌 = 50 
(resulting in no upper impact). 

Exciting the system with a frequency Ω < 4 results in a linear frequency response (phase-plot in 
detail A), as for such frequencies the resulting acceleration for 𝑚𝑚2 is too weak (in comparison to the 
gravitational acceleration) and therefore it will not lift off. Increasing the frequency further, 𝑚𝑚2 starts 
intermittently to lift off, this is shown in phase-plots details B-E. Especially interesting is the behavior 
of mass 𝑚𝑚2 in interval 0.8 < Ω < 1.5 (phase-plot details C and D are similar) – over this large 
interval, we have an auto-stabilization frequency effect of mass 𝑚𝑚2 (autoparametric resonance). 

6.  Conclusions 
New analytical models for the set of DE given in (5) and (6) have been created using a well-studied 
nonlinear exponent (𝑛𝑛 = 3) and a new (𝑛𝑛 = 5) for 1DoF vibration energy harvesters leading to 
solutions presented in (17) and (19); these analytical models provide a qualitative estimation of the 
nonlinear frequency response (compared to the numerical solutions). The larger the exponent grows, 
the larger the estimated analytical error becomes. Furthermore we showed, that introducing a very 
strong nonlinear spring with exponent 𝑛𝑛 = 5, we stay almost indefinitely in resonance for hardening 
systems (Figure 3). 
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We then proposed and modeled a new class of 2DoF vibration harvester systems and showed a first 
none exhaustive analysis of the energy transfer using a dimensionless model, showing autoparametric 
resonance for both masses 𝑚𝑚1 and 𝑚𝑚2 over a large frequency range (see also Detail C and D, Figure 5 
and chapter 5.  for further details).  

 
Figure 5. Dimensionless frequency responses 𝑦𝑦1 (blue) and 𝑦𝑦2 (red) and electrical power (green) 
having weak electrical load (see also chapter 4.  ) using an excitation chirp signal 𝑦𝑦0 (grey). 
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