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Abstract. The research topic of autonomous cars and the communication among them has
attained much attention in the last years and is developing quickly. Among others, this research
area spans fields such as image recognition, mathematical control theory, communication
networks, and sensor fusion. We consider an intersection scenario where we divide the shared
road space in different cells. These cells form a grid. The cars are modelled as an autonomous
multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We
prove that the overall system reaches stability using Optimal Control for each multi-agent and
demonstrate that by numerical results.

Today the development of autonomous cars and the insurance of their correct behavior are
still a great challenge in both academic research and the automotive industry. To ensure that
networked cars are reliable in shared-space scenarios, the car-to-car communication implemented
as a cooperative strategy is a possibility for getting a solution in the intersection resource
problem. The ideal situation will be if all participants support them. Yet, non-communicating
participants should also be included within such scenarios. Here, we assume that even if
communication data is missing, a networked car is able to estimate the future route of a respective
participant sufficiently accurate to guarantee collision avoidance.

To incorporate the behavior of the other cars and of disturbance factors, we propose to
utilize a Distributed Nonlinear Model Predictive Control Scheme to formulate our problem
as an optimal control problem. Nonlinear Model Predictive control (NMPC) is nowadays a
widespread method, which is used in many feedback control system applications [1]. A survey
of the nonlinear version is given by [2] and [3]. NMPC itself is a three step procedure: First,
the current state of the system is estimated. Then, based on that estimate, an internal model
of the system dynamics is used to predict the state trajectory over a finite time horizon and to
compute a control u minimizing a given cost functional subject to possible constraints. Last,
only the initial segment of the computed control u is applied, which renders the algorithm to
be iteratively applicable and repeat the procedure until the equilibrium is achieved. The goal
of NMPC is to (practically) asymptotically stabilize the system to a target x∗. To guarantee
this property, endpoint constraints [4] or terminal constraints and costs [5] as well as a relaxed
Lyapunov inequality [3] have been proposed. Since terminal constraints are inadequate for a
networked car scenario due to the size of the problem and also limit the feasible set [6], we follow
the latter approach.

For our networked car scenario, a distributed control setting appears naturally. Stemming
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from a centralized idea, Richards and How [7], among others, proposed to split up the centralized
optimal control problem into subproblems connected by a communication network, which lead to
a Distributed Model Predictive Controller (DMPC). The general idea is to reduce the complexity
of the problem induced by the number of constraints and control variables, which are needed by
the centralized problem. While the total number of constraints and control variables remains
unchanged, each subproblem is much smaller and can be solved more easily. We model these
subproblems as an independent NMPC problems, and connect them to obtain all information
about the chosen solution of the other subproblems. Here, we follow the approach to a fixed
order, in which subproblems are solved.

The paper is organized as follows: In the following section, we describe the intersection
scenario, which we consider throughout our work. In Section 2, we formally introduce the
DMPC setting for our problem scenario. Respective stability conditions are shown to hold
in Section 3 and illustrated using numerical experiments in Section 4. Last, we draw some
conclusions in Section 5 and give a short outlook on future work.

1. Intersection Scenario
We consider a scenario based on an intersection without traffic lights similar to [8]. In this
scenario, the authors proposed to divide the shared space of an intersection into multiple
cells. These cells form a two-dimensional grid, which is administrated centrally. This scenario
illustrates a simple form of a shared resource allocation problem. The cars are managed by one
multi-agent each, which aims to cross the intersection in two directions straight ahead. The
resulting problem is solved by a centralized approach utilizing the Organic Computing Principle
[9]. An observer/controller-architecture is introduced to calculate a path through the intersection
for each incoming networked car and to detect deviations using the A∗ Search Algorithm [10].
The path is formulated as a sequence of tuples. Each tuple contains time (n) and space
coordinates (k, m) to clarify when the cells will be occupied (p = (n1, k1,m1) , . . . (ni, ki,mi)).
Here, n represents the nth discrete time step, k and m are the coordinates within the grid.
Since the cars are modelled as multi-agents which can re-plan their original path, deviations are
possible. The observer recognizes the latter and influences the affected cars including the causer
by renewing the paths and spreading the information. The communication is centralized and
controlled by the observer-/controller-system. Hence, only car-to-infrastructure communication
is considered.
We propose to modify this scenario and implement a distributed control. Different from [11]
where the paths are predefined and the optimization function considers speed and acceleration
only, our aim is to model both the car and the scenario more generally. The collision avoidance
in [11] is introduced as a constraint, which is imposed to a car following the priority assignment.
We consider the reservation of grid cells to avoid any collisions. An illustration of our scenario
is illustrated in Figure 1. To this end, we allow traffic from each direction within our extended
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Figure 1. Example of a 4 × 4 -
Intersection scenario divided in grid
cells which shows the requested
reservations made by cars, dashed
line illustrates the planned path for
car 6 to reach its target x∗s
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scenario. This raises the risk of a deadlock, which, for instance, may occur if two cars stand
opposite to each other and cannot give way. Here, we avoid this possibility by introducing lanes,
which are a necessity for conventional cars during the introduction phase of networked cars. The
lanes determine the direction in which a car can move forward. Additionally, we introduce one
multi-agent per car, which performs the path calculation via a DMPC algorithm to compute an
optimal collision-free solution through the grid. To follow the approach of a fixed order, each
car is set up with an index by initialization. The simulation procedure is executed as described
in Algorithm 1.

Algorithm 1 Simulation procedure

Given: Initial time and set of active cars S.
While S 6= ∅ do

(i) State estimation:
Get current state for each car xs ∈ S.

(ii) Control computation:
For each car xs ∈ S do

(a) If current position is target position, then remove car xs from S and break.
Else set completed state to false.

(b) While completed state is false
1. Compute optimal path over finite horizon for given constraints.
2. Try to reserve time/space tuples. If successful, set completed state to true. Else,

increment time value and try again.

(iii) Control implementation:
Implement all first control elements and shift horizon forward in time.

We model the target distance as a cost function and let the path be calculated and optimized
by each vehicle separately. The actual path optimization in every time step n is necessary as we
have multiple lanes for each direction so the dynamics is in the path calculation. We consider
the reservation of grid cells to avoid any collisions.

2. Formulation in DMPC
2.1. System definition
We suppose the cars to be modeled as multi-agents and denote the overall state of the system
by x, where there can be S subsystems

x = {x1, · · · , xS} .

where s denotes the sth car. From the physical point of view x describes the position of the car
in the intersection scenario. The path p through the intersection scenario is given as a sequence
of tuples (n, k,m) ∈ N0×{1, . . . , Lk}×{1, . . . , Lm} with Lk, Lm ∈ N, where the latter set denotes
the time-space grid. The term (n, k,m) denotes the coordinates, at which a car can be situated,
i.e.

xs (n) = (n, k,m) ∈ N0 × {1, . . . , Lk} × {1, . . . , Lm}

where n denotes the discrete time, and k and m are the coordinates within the grid. The
dynamics of the sth subsystem

xs (n+ 1) = fs (xs (n) , us (n)) (1)
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connects these tupels to generate a path, where the control us(n) implements the path item for
the next time step. Hence, the path can be written as

Path ps = (xs (n))n∈N0

The target for the overall system is denoted by x∗ containing the targets

x∗ = (x∗s)s={1,··· ,S}

for each subsystem, which we consider to be time invariant for simplicity of exposition. The
control us(n) of a subsystem s is given also as absolute coordinates of the grid similar to xs(n)
which contains also the path tuple (n, k,m) for each system change.

2.2. Constraints of Subsystems
Each subsystem is contemplated with constraints that have to be satisfied. Here, we introduce
three different kinds of constraints, the first to incorporate restrictions solely based on the local
state and control, the second to include collision avoidance, and the third to enforce stability of
each subsystem. The latter is modeled via

#xs = | ((n1, k1,m1) , · · · , (ni, ki,mi)) | < M, (2)

where M defines an upper bound on the length of a path sequence. As a consequence, each
subsystem has to reach its target in at most M steps.
To avoid collisions, we do not allow two subsystems xr and xv, r 6= v, to take identical time-
space coordinates. Hence, a tuple (ni, ki,mi) can only appear at most once in all paths ps. More
formally, we obtain

∀ (ni, ki,mi) ∈ xr ⇒ (ni, ki,mi) 6∈ xv (3)

for all r, v ∈ {1, · · · , S} with r 6= v.
Last, using local restrictions we restrict the motion of each car by either staying at the
current position, i.e. xs (n+ 1) = xs (n), or moving to a neighbouring cell, that is from
xs (n) = (n, k1,m1) to xs (n+ 1) = (n+ 1, k2,m2), where

(|k2 − k1|, |m2 −m1|) ≤ (1, 1) (4)

2.3. Costs for each Subsystem
Incorporating the dynamics (1) and the constraints (2), (3) and (4), each multi-agent optimizes
its subsystem with respect to the stage cost

` (xs(k), us(k)) = ‖xs(k)− x∗s‖2 + λ‖us(k)‖2,

where λ > 0 is a regularization factor to avoid bang-bang behavior of optimal solutions. Utilizing
the DMPC approach, we define the cost function for each subsystem via

JN
s

(
x0s, us

)
:=

N−1∑
k=0

`s (xs (k) , us (k)) (5)

where x0s denotes the initial value of the path to be optimized, i.e. xs(0) := x0s, and JN
s the

cumulated costs for the each system state k over an horizon of length N .
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2.4. Costs of Overall System
The cost function can also be interpreted as energy, i.e. the overall system loose potential
energy if the cars are moving towards the target. Here, we assume that after each time step of
the DMPC procedure, the overall system looses potential energy. While appearing restrictive,
this assumption always holds due to our fixed order of computations for subsystems. Hence, at
least one car xs can move forward and reduces its own costs, and thereby also the cumulative
system costs. The DMPC procedure implements a minimizer of (5), which we denote by

u∗s(·, xs) = argmin
us

JN
s (xs, us) .

Hence, the cumulative costs of the overall system for the DMPC setting are given by

V N (x0) =
S∑

i=1

JN
s

(
x0i , u

∗
s(·, x0i )

)
(6)

2.5. Feedback of the subsystem
Last, we obtain the feedback µNs for each subsystem as the first element of the minimizer u∗s(·, xs)
from (6), i.e.

µNs (x0s) = u∗s(0, x
0
s) (7)

Note that the feedback is implicitly coupled with the success of reserving a path item (n, k,m)
of the grid in the optimization and coordination step. If more than one system attempt to get a
reservation for the same cell at the same time n, only the highest priority path item is accepted.
This fulfills the constraint formulated in (3). The other inquires are rejected and the systems
have to attempt a new reservation at a later time or consider a different field to attempt a
reservation.

3. Stability conditions
Our goal is to show asymptotic stability of the overall system. We use [3, Def. 2.14] to derive
an upper bound for our system, which will guarantee the asymptotic stability of the system.
To define the required bounding function β (r, n) ∈ KL, we introduce the set K describing the
functions α : R+

0 → R+
0 , which are strictly increasing and satisfy α (0) = 0. If additionally α

is unbounded, then it called a class K∞ function. Secondly, we call functions δ : R+
0 → R+

0 to
be of class L, if δ is continuous and strictly decreasing with limn→∞ δ (t) = 0. Combining these
properties, we call β (r, n) to be a class KL function if β (r, n) is continuous and β (·, n) ∈ K
for all n ≥ 0 and β (r, ·) ∈ L for all r ≥ 0. Based on the asymptotically stability we can show
that our system is optimal controllable. This is presented in the numerical results 4 where the
suboptimality α is used to evaluate the performance of the controller.

Note that for our intersection scenario, we cannot guarantee that a minimizer u∗s to exist
such that costs are decreasing for each car in each time step. Indeed, the constraints (2) and (3)
allow cars to hold their position for a number of time steps to let other cars pass. Yet, some cars
move closer to their target and the respective costs of these subsystems are decreasing. Hence,
only an overall consideration is promising.

In the following, we prove stability of the presented intersection scenario by showing that for
r := |xs − x∗s|

β (r, n) = S max
{
M −M − n, 0

}
M2 + λSM +

M−max{0,n−M+M}∑
j=1

j2
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is a class KL function and by constructing an upper bound for the overall costs. To this end,
we first derive a bound β (r, 0) for the initial conditions, which we extend in a second step to an
upper bound for all time instances n. Here, we abbreviate the lower bound of the path length
(2) as M = min (#xs) and the upper bound as M = max (#xs).

First, we ignore (3) and define β (r, 0) as a function, where all S cars stay in their initial
position until they have to leave to get to the target without violating M . Due to ignoring the
collision constraint (3), β (r, 0) represent an upper bound on the costs. We split this expression
into two subsums:

β (r, 0) =
S∑

s=1

M−M−1∑
k=0

` (xs, 0) +
M−1∑

k=M−M

` (xs (k)) , us (k)

 .

Since by assumption cars remain at their initial position, we have us (k) = 0, k = 0, · · · ,M −
M − 1 and can dissolve the inner sums to

β (r, 0) =
S∑

s=1

(M −M) ||x0s − x∗s||2 +
M−1∑

k=M−M

||xs (k)− x∗s||2 + λ||us||2


=

S∑
s=1

(M −M) ||x0s − x∗s||2 +

M−1∑
k=0

||xs (k)− x∗s||2 + λ||us||2
 ,

which allows us to shift the interval for the second sum to k = 0, · · · ,M − 1. By our model
definition, we obtain ||x0s − x∗s|| = M for the initial position and ||xs (k)− x∗s|| = M − k as a car
moves towards its target with ||us||2 = 1. Hence, we obtain

β (r, 0) =

S∑
s=1

(M −M)M2 +

M−1∑
k=0

(M − k)2 + λM

.
Dissolving now the inner sum over the systems we get

β (r, 0) = S

−M3 +M2M +Mλ+

M∑
k=1

k2

 . (8)

With the application of square pyramidal number for the last remaining sum in (8)

M∑
k=1

k2 =
1

6
(M + 1)M (2M + 1)

we can simplify (8) to

β (r, 0) = S

(
−2

3
M3 +M2

(
M +

1

2

)
+M

(
λ+

1

6

))
, (9)

which reveals an upper bound on the initial cost. To construct the decrease of the bound over
time, we consider the sum over the subsystems S

β (r, 0) =
S∑

s=1

(
1

3
‖xs (k)− x∗s||3 + ‖xs (k)− x∗s‖2

(
k +

1

2

)
+ ‖xs (k)− x∗s‖

(
λ+

1

6

))
.
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Now, we can use (9) to incorporate the time n in β (r, n). The upper bound over time resembles
the sequential steps of all cars. Hence, as time progresses, we get

β (r, n) =

S∑
s=1

max{M−1−n,0}∑
k=0

` (xs (0) , 0) +

max{M−1−n,0}∑
k=max{M−M−n,0}

` (xs (k + n) , us (k + n))

 .

Again, the first inner sum describes those cars waiting at their position until they must start to
reach their target. The second sum represents the costs over the interval during which the cars
move towards their target. Dissolving the first sum reveals

β (r, n) = S max
{
M −M − n, 0

}
M2 + S

max{M−1−n,0}∑
k=max{M−M−n,0}

` (xs (k) , us (k)) .

By shifting the index of the remaining sum to k = 0, we get

β (r, n) = S max
{
M −M − n, 0

}
M2

+ S

max{M−1−n,0}
−max{M−M−n,0}∑

k=0

`
(
xs
(
k + max

{
M −M − n, 0

})
, us

(
k + max

{
M −M − n, 0

}))
.

As we combine the difference of the maxima of the upper limit, we get

β (r, n) = S max
{
M −M − n, 0

}
M2

+ S

M−1∑
k=0

`
(
xs
(
k + max

{
M −M − n, 0

})
, us

(
k + max

{
M −M − n, 0

}))
.

Resetting k := k − n, the latter expression simplifies to

β (r, n) = S max
{
M −M − n, 0

}
M2

+ S

M−1∑
k=0

`
(
xs
(
k − n+ max

{
M −M,n

})
, us

(
k − n+ max

{
M −M,n

}))
.

As M −M ≥ n, we can eliminate the maximum terms in the index and get therefore

β (r, n) = S max
{
M −M − n, 0

}
M2

+ S

M−1∑
k=0

`
(
xs
(
k − n+M −M

)
, us

(
k − n+M −M

))
. (10)

and for M −M ≤ n

β (r, n) = S max
{
M −M − n, 0

}
M2 + S

M−1∑
k=0

` (xs (k) , us (k)) . (11)

as distinction of both cases.
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As k +M −M − n ≤ k +M −M ≤ k +M for case (10) we obtain

β (r, n) = S max
{
M −M − n, 0

}
M2 + S

M−1∑
k=0

(
k +M

)2
+ λS1

and for the second case (11)

β (r, n) = S max
{
M −M − n, 0

}
M2 + S

M−1∑
k=0

k2 + λS1

For the first case (10) we can assume that for the index k+M−M−n the inequality k ≤ n−M+M
and for the second case (11) k ≤M − 1 as given by the interval.

Therefore we can dissolve both cases by substitute with j := M + k and
max

{
0, n−M +M

}
= M − j to get M − 1 = M − j which leads to j = 1 for the lower

bound and we get

β (r, n) = S max
{
M −M − n, 0

}
M2 + λSM +

M−max{0,n−M+M}∑
j=1

j2

Hence, by construction we have that β (r, n) ∈ KL and an upper bound of the overall costs
satisfying the conditions of [3, Def. 2.14]. Utilizing the properties of the system and of M , M ,
the function β (r, n) may largely overestimate the costs of the overall system. These properties
allowed us to exclude (3) and avoid a collision detection as required in the closed loop. Thereby,
we can conclude asymptotic stability of the overall closed loop system.

Within the analysis of the constructed feedback law, we are not only interested in stability of
the closed loop, but also in the performance of the control. Since the bound β (r, n) is a worst
case bound, the performance estimate that can be derived from it is rather poor. Additionally,
the values M , M may be unknown for example in that case as we cannot predict the maximum
wait time of one car which can prolong the path length. To circumvent these issues, we make use
of the concept of relaxed Lyapunov arguments in the trajectory based setting. In particular, [3,
Proposition 7.6] shows that if there exist a constant α ∈ (0, 1] such that the relaxed Lyapunov
inequality

V N (x (n)) ≥ α`
(
x (n) , µN (x (n))

)
+ V N (x (n+ 1)) (12)

holds for all n ∈ N0 and additionally there exist functions α1, α2, α3 ∈ K∞ such that

α1 (‖x (n)‖) ≤ V N (x (n)) ≤ α2 (‖x (n)‖) , (13)

α3 (‖x (n)‖) ≤ `
(
x (n) , µN (x(n))

)
, (14)

then the closed loop solution x(n) behaves like a trajectory of an asymptotically stable system
and the performance bound

J∞
(
x(0), µN (xs(0))

)
≤ V N (x (0)) /α ≤ V∞ (x (0)) /α

holds.
Since we have shown the existence of a bound β (r, n), we can apply converse Lyapunov

results to guarantee the existence of α1, α2, α3 ∈ K∞ such that (13), (14) hold, cf. [12]. This
allows us to concentrate on the performance evaluation of the proposed control scheme via (12).
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4. Experiments
For the implementation we use the discrete event simulator framework adevs [13] along with the
Qt framework [14]. The cars are modelled as multi-agents objects, which include a controller
instance, dynamical properties, constraints and a cost function with individual targets. The
grid is implemented as an array containing all grid cells. Upon initialization, each car reserves a
time and grid cell tuple in first-come-first-serve fashion. Hence, if a car enters the scenario at a
later time instant, its initial time will also be later. To retain a unique order for the reservation
process, the cars are indexed. For the optimization step within the MPC, we apply the COBYLA
Algorithm (Constrained Optimization BY Linear Approximations) developed by Powell [15]
provided by the NLOpt library [16]. Minimizing the cost function including the individual target
of the car implicitly defines the direction and route of the car. The model of the middle lane
is given as a set of constraints which are defined for each car depending on its start position.
Both the path and control values xs, us are mapped from tuples to absolute values of the cell
grid. In particular, we map the cell coordinate tuples (n, k,m) to global scalars w via

~w = (w1, . . . , wN ) , wi ∈ {0, . . . , LkLm − 1}

with

wi = ki +miLk.

If a car reaches its target, the car is removed from the scenario and is not considered in further
calculations. We set up a standard intersection scenario with a 4 × 4-intersection grid and 20
cars starting in the corners. To guarantee a connected path, we imposed a penalty term η. Here,
a path is connected if each pair of consecutive path items are neighbors in the grid. The penalty
is defined as

ηs = Bv,

where v is the number of not connected pairs of consecutive path items and B a constant.
To analyze the performance of the controller, we utilize the minimal and maximal path lengths

pmin = min
s

#xs ≥M, pmax = max
s

#xs ≤M,

the mean path length

p̄ =
1

S

S∑
s=0

#xs.

and the suboptimality bound α from (12). We evaluate the bound α as the minimum over all
time steps n ∈ N0 and compute the mean over all systems x1, . . . , xS via

αn =

S∑
i=1

min
(
αn−1,

Vn−1−Vn

`n−1

)
S

with α−1 = 1.

For α we used the value in the last step named here αn and α as the mean over all time steps.
For our experiments, we considered the parameters λ = 0.2 and B = 100 and a horizon length

of N = 3.
We set up configurations with different quantities of cars and the intersection size. Pursuing

a realistic approach we consider a 4 × 4-intersection scenario, i.e. two lanes for each direction,
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Table 1. Experimental results for test scenarios, αn as last time step, α as mean value over all
time steps in the simulation

#S Grid N pmin pmax p̄ αn α

20 4× 4 3 4 11 6.65 0.25 0.2155

30 4× 4 3 4 10 6.2 0.27 0.2707

20 6× 6 3 5 18 7.25 0.0019 0.1005

30 6× 6 3 5 13 6.76 0.00013 0.1639

20 6× 6 4 5 11 6.55 0.00587 0.43

30 6× 6 4 5 16 6.8 0.00588 0.3587

and a 6× 6-intersection scenario reflecting 3 lanes for each direction. In Table 1, we present our
numerical results for both scenarios with 20 and 30 cars for each direction.

In the 4× 4-intersection we observe a slightly larger mean path length p̄ for 30 cars than for
20 cars. This due to higher reservation times for the direct way from the start to the target cell
of a vehicle as more cars try to reserve the direct way. With the growing reservation time values
for the direct lane, the minimum of cost function is attained using the second lane. Hence, cars
entering the intersection at a later time step choose the second lane. Reflecting this situation we
can argue that a certain amount of cars is necessary that the cost function gives an advantage
over distance for a shorter time delay. For α we used the value in the last step named here
mentioned αn and α as the mean over all time steps.

For the 6 × 6-scenario, we similarly observe that the mean path length p̄ is smaller for
the configuration of 30 cars than with 20 cars. The effect is also increased with the greater
intersection dimensions. Hence, we can conclude that the influence of the higher distances for
the cars leads to the greater gap in p̄. Additionally, we considered different horizon lengths and
observed an decrease in p̄ for larger horizon for 20 cars. For the scenario with 30 cars p̄ changes
only slightly. Again, the reservation of more cells in the optimization has a large impact on the
difference of p̄ for 20 cars with greater horizon length. The time slots which are reserved by the
cars reveal later times for late arriving cars. Hence, the cost function leads to an earlier change
to the second lane. Yet, we also observed an improvement in the suboptimality index for both
scenarios which improves greatly for the larger horizon length.

In the following figures, we give some graphs for the overall cost function according to Table 1.
We included β (r, n) as a monotonously decreasing function representing the upper bound for
our cost function. For longer horizons illustrated in Figure 6 and 7, we observe that the cost
function tends to zero more slowly. In this case, the control impact is less aggressive compared
to a shorter horizon, which is a known typical effect of using MPC. In the figures 4-7 a slightly
increase of the costs occurs in one step. As mentioned in the 4x4-evaluation, this is caused by
changing to the second lane of the later following cars. As the cost function returns lower costs
due to earlier available reservation times for the second lane over the optimization horizon for
one car than reserving later reservation times in the crowded cells, the applied optimal control
u (0) increases the costs for the changing cars slightly. Still, the costs are decreasing and remain
bounded by β (r, n), which indicates that the solutions show stable behavior.
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Figure 2. Overall costs for 20 cars,
N=3, k,m=4
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Figure 3. Overall costs for 30 cars,
N=3, k,m=4
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Figure 4. Overall costs for 20 cars,
N=3, k,m=6
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Figure 5. Overall costs for 30 cars,
N=3, k,m=6
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Figure 6. Overall costs for 20 cars,
N=4, k,m=6
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Figure 7. Overall costs for 30 cars,
N=4, k,m=6

5. Conclusion
In this paper we used an intersection scenario as a discrete shared space grid. We formulated
this scenario as a Distributed Model Predictive Control Problem in Section 2 where each car
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modelled as an multi-agent optimizes its own path. In Section 3 we have proven the stability for
the overall system by deriving a class KL boundary function. Our numerical results showed that
the suboptimality index α known from relaxed Lyapunov theory remains positive. Additionally,
the cumulated costs are decreasing in every time step and satisfy our computed bound, which
indicates stable behavior of the system.

In further research we will consider an exponential term depending on time to privilege
long waiting cars. Converting the cost function into a continuous one will also extend the
suitability for continuous optimization algorithms. Additionally, we plan to incorporate the risk
of deadlocks by allowing any direction for the lanes to increase the throughput for the overall
traffic. Last, by including path predictions of non-communicating participants we will improve
practicability of the coordination.
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