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Abstract. Traditional fault diagnosis methods based on hidden Markov model (HMM) use a 

unified method for feature extraction, such as principal component analysis (PCA), kernel 

principal component analysis (KPCA) and independent component analysis (ICA). However, 

every method has its own limitations. For example, PCA cannot extract nonlinear relationships 

among process variables. So it is inappropriate to extract all features of variables by only one 

method, especially when data characteristics are very complex. This article proposes a 

switched feature extraction procedure using PCA and KPCA based on nonlinearity measure. 

By the proposed method, we are able to choose the most suitable feature extraction method, 

which could improve the accuracy of fault diagnosis. A simulation from the Tennessee 

Eastman (TE) process demonstrates that the proposed approach is superior to the traditional 

one based on HMM and could achieve more accurate classification of various process faults. 

1. Introduction 

With the growth of complexity of industrial processes, effective monitoring and diagnosis play a 

significant role in ensuring operational safety of chemical equipment, maintaining product quality, 

optimizing product profit, and improving environmental sustainability [1]. 

In process industry, more and more data have been collected with a wide range utilization of 

sensors. However, it will lead to low efficiency if original data are stored and processed directly.  

Besides, they do not need all the features of objects in some particular applications. This is because 

many features cannot reflect the nature of the objects. Sometimes redundant features will even become 

obstacles to the subsequent processing. Based on the views above, feature extraction is needed to gain 

essential characteristics of data. It will reduce the interference information like noise and highlight the 

useful information. Feature extraction is the key step in fault diagnosis. Because of this, the accuracy 

of the fault diagnosis will be improved by enhancing the effectiveness of feature extraction. 

There are a lot of traditional feature extraction methods, such as PCA、KPCA and ICA [2]. PCA 

can deal with linear relationships among variables effectively, but it cannot extract the nonlinear 

relationships, which are very common in the process industry [3]. KPCA was proposed to deal with it. 

It could extract nonlinear relationships among variables. Because of this, it is widely utilized in image 

recognition, feature extraction, fault detection and other fields [4]. However, there is no effective way 

to select the kernel function and parameters of KPCA at present. If KPCA was used to deal with 

process variables with linear relationships, not only the choice of kernel function and its parameters is 

cumbersome and time-consuming, but also it will greatly decrease accuracy of fault diagnosis with the 

inappropriate parameters. So it is inappropriate to use KPCA for feature extraction blindly. So far, 

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012047 doi:10.1088/1742-6596/659/1/012047

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

when KPCA is utilized, nonlinear relationships among variables are a prior condition in most 

researches. That is to say, it is necessary to analyse the nonlinear relationships among process 

variables. This article proposes a switched feature extraction method to deal with the proposed 

problem. As we all know, a better feature extraction would lead to a better classification. So the 

proposed method has a great research value. A nonlinearity measure proposed by Kruger to analyse 

the nonlinearity among variables is used to choose the appropriate method for feature extraction [5]. 

The extracted features will be used as the observation sequences of HMM, which is used as a classifier. 

HMM is a valuable pattern recognition tool for sequential data. Its application for industrial 

processes monitoring is gradually increasing. It is an intelligent diagnosis technology with some 

unique characteristics. It is a doubly stochastic process which establishes a statistical model of time 

series by Markov chains and random functions [6]. So HMM has a strong ability to set up model of the 

dynamic process and classify sequential patterns. Due to the characteristics above, HMM has a good 

application prospect in the field of fault diagnosis and detection in process industry. So we choose it to 

clarify the efficiency of the proposed method. 

In this article, the proposed method properly takes the characteristics of process data into 

consideration. By analysing data characteristics, we could overcome the insufficient of the traditional 

fault diagnosis methods which sometimes extract features of process variables by inappropriate 

method. By this way, we could improve the accuracy of the fault diagnosis. 

The remainder of this article is organized as follows. In section II, PCA, KPCA and HMM are 

briefly described. In section III, switched fault diagnosis approach for industrial processes based on 

HMM is developed in detail. In section IV, TE process is used to illustrate the effectiveness of the 

proposed method. Section V gives the conclusions. 

2. Preliminaries 

2.1. Principal component analysis 

PCA is a linear dimension reduction technique. It transforms high-dimensional correlated variables 

into low-dimensional uncorrelated ones. PCA determines a series of orthogonal vectors which are 

called loading vectors. Consider a data matrix n mX R  , for n observations with m measurement 

variables. The loading vectors could be derived by Singular Value Decomposition (SVD) as follows: 

  


1

1

TX U V
n

 (1) 

where 
n nU R  and 

m mV R  are both unitary matrices. The matrix n mR  contains real and 

decreasing singular values ( 1 2 m     ) along the main diagonal, with other off-diagonal 

elements to be zero. Loading vectors are the orthogonal columns of the matrix V and the variance of 

the data set projecting along the kth column of V is equal to 2

k . 2 ( 1,2, , )k i m  is arranged in 

decreasing order to determine the principal components. The first a PCs are selected to build the PCA 

model, so score vectors for kth sample can be represented by loading matrix P and sample vectors
kx . 

  T

k kt P x  (2) 

2.2. Kernel principal component analysis 

PCA performs well when the relationships among variables are linear, but it can’t deal with 

nonlinearity among variables. KPCA projects observation matrix to a high dimensional feature space 

F by using kernel function and then implements PCA in F, which can be expressed as 

  : mR F  (3) 
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Assume mapping data for each variable have been scaled to zero mean, just
1
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denotes the data size. The corresponding covariance matrix can be defined as 
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In essence, KPCA has realized the nonlinear transformation between data space and feature space. 

ix and 
jx are sample points in data space and the mapping function is  .The fundamental of KPCA is 

inner product transformation. 

 x x x x  ( ), ( ) ( , )ij i j i jK K  (5) 

Data points ( ),( 1, , )kx k n  need to be processed in the feature space F, the process is as follows 

    1 1 1 1n n n nK K K K K  (6) 

where 
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By eigenvalue decomposition to K as shown 

   K  (7) 

We can obtain orthogonal eigenvectors 1 2, , , n   and corresponding eigenvalues 1 2 n     . 

The dimension reduction can be obtained by mapping ( )x to the eigenvectors kv in F, 

where ( 1,2, , )k a , which can be expressed as 

    


 
1

, ( ) ( ), ( )
n

k

k k i i

i

t v x x x  (8) 

In the KPCA method, we just need to calculate matrix K to deal with the problem of eigenvalues by 

ignoring the specific nonlinear mapping relation . In this article, we choose radial basis kernel, that 

is 

 x exp



 

2

( , ) ( )
x y

K y  (9) 

with rm  , where r is a constant to be selected and m is the dimension of the input space. 

2.3. Hidden Markov model 

Generally speaking, HMM is a valuable pattern recognition tool for sequential data. Its application for 

pro-cess monitoring is gradually increasing. A continuous HMM (CHMM) is used since the TE data 

are continuous. It usually can be described by the following parameters: 

  N: the number of hid den states, the states are expressed as  1 2, , , NS S S S  

  ( ), 1,2,jB b O j N  : observation probability matrix 

where 
1

( ) [ , , ], 1
M

j jm jm jm

m

b O C H O U j N


    
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  ijA a : state transition probability matrix  

where 

1
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 O  is the observation vector. jmC  is a mixed coefficient of the mth mixing element of the 

hidden state j. H is Gaussian mixture probability density. jm  is mean vector of the mth 

mixing element of the hidden state jS . jmU is the covariance matrix of the mth mixing element 

of the hidden state jS . 

where 
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  i  :the initial state probability matrix 

where 

q i N


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3. Switched fault diagnosis approach based on HMM 

Industrial processes are usually sophisticated, so the process data have various characteristics, such as 

non-Gaussianity, dynamic correlations, nonlinear relations and uncertainties in the process 

measurement, which makes feature extraction significant [3]. Only one feature extraction method 

would be used in traditional fault diagnosis approach based on HMM, such as PCA [7]. But data have 

their own characteristics in different operation conditions, which makes it unable to perform well by 

using a unified feature extraction method. Here, we just consider linear and nonlinear relationships 

among process variables. This article proposes a switched feature extraction method based on PCA 

and KPCA. Nonlinearity measure is used to analyse the nonlinear relationships among process 

variables and choose the appropriate method for feature extraction. The method will be introduced 

below. 

3.1. Nonlinear measure 

The original data can be divided into several regions based on a priori knowledge of the process, and 

the accuracy boundaries are determined according to the confidence intervals of the correlation matrix 

of one region. By using the principle of cross-validation [8], we can deal with the problem of choosing 

region, which helps us to determine the accuracy boundaries. The relationships among variables are 

decided by comparing the residuals in each region with their corresponding accuracy boundaries. 

Specific steps are shown as follows. 

Suppose a data matrix n mZ R  having m variables and n samples is divided into l regions, each of 

which includes /n n l  observations.  

The correlation matrix for the original data is defined as: 

 

 
 
 
 
 
 

11 12 1

21 22 2

1 2

m

m

zz

m m mm

s s s

s s s
S

s s s

 (10) 

The element in matrix is expressed as: 
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where 
iz , 

iz are the mean values and 
i , j are the standard deviations of ith, jth variables. 

Since the variance and mean values of variables follow 2  and t distribution, respectively. The 

confidence intervals of the mean value and variance of ith variable, ( )i

z CONF , for a confidence level  

 

Table 1. Calculation of confidence limits for mean value. 

Step Description  Equation 

1 Determine solution of ic  for 

t distribution 

1

1

1
( )

2
ic f

 
  

2 Calculate mean iz and variance
is  2

1 1

1 1
, ( )

1

n n

i ki i ki i

k k

z z s z z
n n 

  


   

3 Calculate i  i i
i

n

s c
   

4 Define confidence limit ( ){ }ˆi

z i i ii iCONF z zz       

 

Table 2. Calculation of confidence limits for variance. 

Step Description  Equation 

1 Determine solution of 1ic  and 

2ic  for 2  distribution 

1 1

1 2 2 2

1 1
( ), ( )

2 2
i ic f c f

   
   

2 Calculate ( 1) in s   

3 Calculate 1i  and 
2i  

1 2

1 2

( 1) ( 1)
,i i

i i

i i

n s n s

c c
 

 
   

4 Define confidence limit ( )

2 1
ˆ{ }i

s i i iCONF s     

 

of 95%   or 99%   can be obtained as expressed in Table 1 and Table 2, respectively. 

According to them, we can obtain the upper and lower threshold for each element of matrix zzS . It can 

be shown as: 

 

      
 

      
  
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       

11 11 11 12 12 12 1 1 1
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1 1 1 2 2 2

L U L U L U

L U L U L U
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m m m

m m m

zz

m m m m m m mm mm mm

s s s s s s s s s

s s s s s s s s s
S

s s s s s s s s s

 (12) 

where the subscripts U and L represent the upper and lower limit. The more details of calculation are 

presented in a paper authored by Kruger [5]. The formula above can be simplified as follows 

  
L Uzz zz zzS S S  (13) 
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The accuracy boundaries can be determined according to the confidence interval of correlation 

matrix. In terms of frobenius norm, the sum of the standard deviation   is equal to the sum of the 

discarded eigenvalues of a PCA model. 

   
    
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

  2

1 1 1 1

1

1

m n m m

j ij k

j i j k a

e
n

 (14) 

Because the elements in correlation matrix 
zzS decide the eigenvalues 

1, ,a m 
. The estimates of 

accuracy boundaries can be converted into the following optimization problem. 

 

argmax S S

argmin S

 

 





  
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MIN MIN
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k k ZZ ZZ
S

k k ZZ ZZ
S

S
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where 
MAXZZS  and

MINZZS  are volatilities of ZZS  to determine 
MAXk  and

MINk . Finally, we get the 

accuracy boundaries as follows 

 
1 1

,
MAX MIN

m m

MAX k MIN k

k a k a

   
   

    (16) 

If all the residual variances fall inside the accuracy boundaries, the process is considered to be 

linear and then we choose PCA for feature extraction, vice versa. 

3.2. Fault diagnosis approach 

In this article, HMM is integrated with the switched feature extraction method for fault diagnosis. The 

method mentioned above contains three procedures: nonlinearity measure, feature extraction and fault 

classification. 

Firstly, measure the nonlinearity among original process variables for every mode. The original 

data are divided into several regions and the accuracy boundaries are determined. If all the residual 

variances lie inside the accuracy boundaries for each region, PCA is much more appropriate than 

KPCA for feature extraction and vice versa. 

Secondly, the data from every mode are processed respectively by the feature extraction method 

above selectively. For example, if PCA was selected, the PCs extracted are utilized as observation 

sequences of HMM. 

Thirdly, set up a model library of HMMs by Baum-Welch algorithm, including one HMM for 

normal operating condition and other HMMs for abnormal conditions. When an unknown fault needs 

to be classified, it is processed by the suitable method for feature extraction. ( | )( 1, , )iP O i N   

would be calculated, where 1 represents HMM for normal operating condition, 2 , , N  represent 

HMMs for all abnormal conditions, and O  represents observation sequence. ( | )iP O   represents the 

probability of the appearance of the observation sequence O with given i . The maximum ( | )iP O  is 

gained by calculating all the probability, which shows that fault i ( 1, , )i N occurred. A flow 

diagram of the proposed approach is shown in Fig.1. 

4. Application of examples 
TE process was created to provide a realistic industrial process to test the performance of various 

monitoring and diagnosis approaches [9]. This process consists of five major units: reactor, condenser, 

separator, compressor and stripper. It has 41 measured variables (22 continuous process variables and 

19 composition variables) and 12 manipulated variables. It includes 21 preset faults which are denoted  
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Figure 1. Flow diagram of the proposed approach. 

 

as IDV(i) ( 1, ,21)i  . 

In this article, training set consists of three modes, 
1 2,R R and

3R . 
1R represents the normal operating 

condition, whereas
2R and

3R represent two abnormal conditions, IDV(1) and IDV(7). There are 33 

variables that have been selected: 22 process measurements and 11 manipulated variables. The 

agitation speed is not involved because it is not manipulated in simulation process. In addition, 19 

composition measurements are excluded [10]. More details are shown in Table 3. 

 

Table 3. Training set. 

Pattern Fault Number  Variable Type Time(minute) 

1R  Normal ------ ------ 480 

2R  IDV(1) A/C feed ratio, B composition 

constant 

step 480 

3R  IDV(7) C header pressure loss- 

reduced availability 

step 480 

 

Table 4. Nonlinearity measure applied to the process using three sets. 

Region UCL99 UCL95 LCL99 LCL95 Region1 Region2 Region3 

1 5.9241 5.8930 5.1061 4.8307 6.0042 3.9945 3.5391 

2 5.8769 5.8439 5.0108 4.7111 11.6015 5.8740 6.4194 

3 12.3295 11.1726 10.6114 9.8594 17.4527 12.1941 12.1379 

 

Firstly, we analyse the nonlinear relationships among variables in the training set. 1R is divided into 

three regions of 160 samples each. The results of nonlinearity measure of 1R  for each region are 

shown in Table 4. The accurate boundaries and residuals of each region are presented. The bold 

figures represent the residuals fall outside of the accurate boundaries. Fig.2 is a graphical 

representation of the case where the accuracy boundaries were obtained from the first region. 

According to it, the discarded eigenvalues of PCA model for all data sets fall outside the accuracy 

boundary. It shows the strong nonlinear relationships among variables. So it is necessary to use KPCA 

for feature extraction. The other modes are also processed in this way. Because of length limitations of 

paper, the results of the other faults are not presented here. 
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Figure 2. Graphical representation of nonlinearity measure for accuracy bounds for first region. 

 

Secondly, there are three HMMs which need to be trained in this article, one for normal operating 

condition and the other two for corresponding faults. For each training mode 
iR (i=1, 2, 3), the 

extracted features are used as observation sequences to train parameters 
i (i =1, 2, 3) of HMM by  
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Figure 3. Iteration process for training three HMMs. 

 

Table 5. Testing set. 

Pattern Fault Number Fault Type Fault occurs from(minute) 

1T  Normal ------ ------ 

2T  IDV(1) step 160 

3T  IDV(7) step 160 

 

Baum-Welch method. The results are shown in Fig.3. It is clear that three training processes are quite 

different from each other, which indicates the modes of operation present distinct characteristics. 

There are also three modes in the testing set, 1 2,T T and 3T . 1T  represents the normal operating 

condition, whereas 2T and 3T represent two abnormal conditions, IDV (1) and IDV (7). All faults in the 

testing set are same with the faults of the training set, and each begins with normal operation and 

introduces a fault after 160 minutes. The more details are shown in Table 5. 

The classifying results of three modes in the testing set are shown in Fig. 4, Fig. 5, Fig. 6. The 

ordinates represent log ( | )( 1,2,3)iP O i  , the log probabilities of the appearance of the observation 

sequence sequence O  with given i in the model library, and abscissa represents time. From all 

figures, we can see that different faults can be identified correctly by the proposed fault diagnosis 

method. In Fig. 4, we can see that all the method can identify the fault correctly, but it is important to 

note that 2( | )P O   and 3( | )P O   are close in (b) and (c). This means that 2R  and 3R  are not 

distinguished well in the traditional method. In Fig. 5, either HMM based on PCA or KPCA cannot 

identify the fault accurately, while the switched method has a better effect. According to the results 

shown in Fig. 6, the proposed method performs better although HMM based on PCA could identify 

the fault. 
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5. Conclusion 

Switched fault diagnosis for industrial processes based on hidden Markov model is proposed. 

Generally speaking, the swiched fault diagnosis approach can enhance the diagnostic capacity of TE 

process because the method properly takes the characteristics of process data into consideration. By 

analysing characteristic of data, we overcome the insufficient of the traditional methods which 

sometimes extracts data features by inappropriate method. By implementing the simulation on TE, we 

are able to get the results which exhibit that the proposed diagnosis approach possesses a superior 

performance when it is compared to the traditional diagnosis based on HMM. 

This study shows the superiority of the switched fault diagnosis approach for industrial processes 

based on HMM. However, there are some issues to be further addressed. The effectiveness of the 

proposed method is demonstrated by using the simulated process data. Future work can implement the 

proposed method with the real world industrial data. In this article we just consider linearity and non-

linearity by using PCA and KPCA. In the future, we can take more characteristic of data into consider- 

ration, such as Gaussianity and non-Gaussianity by enhancing the accuracy of fault diagnosis for 

different modes. 
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Figure 4. Diagnostic result for T1: (a) result based on switched method (b) result based on KPCA (c) 

result based on PCA. 
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Figure 5. Diagnostic result for T2: (a) result based on switched method (b) result based on KPCA (c) 

result based on PCA. 
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Figure 6. Diagnostic result for T3: (a) result based on switched method (b) result based on KPCA (c) 

result based on PCA. 
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