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Abstract. The increasing amount of data in industrial automation systems overburdens the
user in process control and diagnosis tasks. One possibility to cope with these challenges
consists of using smart assistance systems that automatically monitor and optimize processes.
This article deals with aspects of data-driven assistance systems such as assistance functions,
process models and data acquisition. The paper describes novel approaches for self-diagnosis
and self-optimization, and shows how these assistance functions can be integrated in different
industrial environments. The considered assistance functions are based on process models that
are automatically learned from process data. Fault detection and isolation is based on the
comparison of observations of the real system with predictions obtained by application of the
process models. The process models are further employed for energy efficiency optimization of
industrial processes. Experimental results are presented for fault detection and energy efficiency
optimization of a drive system.

1. Introduction
The growing capacity of cost-effective equipment and the requirements of production technology
are resulting in increasingly complex distributed automation systems. A consequence of this
trend is an ever-increasing data volume in industrial processes [1], which must be analyzed and
taken into account in process control. This leads to ever growing demands on data acquisition,
process monitoring, fault recognition and analysis of failure causes. A possibility to cope with
these challenges is the application of assistance systems. As a matter of course, application and
configuration of such assistance systems is required to be as simple as possible. A step into this
direction is the usage of process models that are automatically learned from process data. Self-
learning of process models from data leads to considerable simplification of model creation and
configuration. Process models can be applied to several model-based assistance functions such
as visualization, diagnosis or optimization. An example is the energy efficiency optimization
and fault detection for a conveying system. The purpose of the assistance system is to detect
deviations in system behavior from the normal state (for example too much or not enough energy
consumption of a drive). In addition, it diagnoses the causes for such anomalies (such as wear
or wrong load). Furthermore, automatic optimization of system behavior regarding a given cost
function can be accomplished. An example is the calculation of energy efficient movements of
the conveying system.

This article deals with aspects of smart assistance systems such as process models, assistance
functions and system interfaces. Novel research results with respect to self-diagnosis and self-
optimization of industrial processes are presented. In doing so, the focus is set on components
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of industrial automation systems such as conveying systems or processing modules. The paper
highlights how to integrate approaches to data-driven model learning, fault detection and energy
efficiency optimization in an assistance system for such application cases.

The remaining part of this paper is structured as follows. First, the state of the art for
industrial assistance system is resumed (section 2). In the main part, assistance functions, such
as model learning (section 3.1), self-diagnosis (section 3.2) and self-optimization (section 3.3)
are investigated. The interaction between the assistance functions is outlined in section 3.4. In
section 4, architecture and integration of smart assistance systems are considered. Furthermore,
experimental results for the proposed assistance system are presented (section 5).

2. State of the art
Todays assistance systems can be categorized as follows:

• Assistance systems based on universally usable statistics or data mining tools

• Complete solutions for data acquisition and analysis

• Sector-specific special-purpose solutions.

Examples of data mining tools are WEKA (Waikato Environment for Knowledge Analysis,
[2]) and RapidMiner [3]. These tools offer numerous classification possibilities in addition to
preprocessing methods and methods for cluster and association analysis. Examples of statistics
packages are R [4] and the Matlab Statistics Toolbox. Both of these packages offer many types
of statistical process analysis, such as variance analyses (ANOVA), regression methods and
statistical time series analyses. Common data acquisition and analysis solutions in an industrial
context are SAS Quality Lifecycle Analysis and SPSS from IBM. With their powerful prediction
methods, these solutions allow an early detection and user notification of quality defects and
arising problems in production processes. They also provide comprehensive means of merging
and correcting large data volumes. The described approaches offer a wide range of functions,
but are not always easy to operate for inexperienced users, since they require many parameters
such as threshold values for automatic warning functions to be configured manually. Also
available are special-purpose solutions, tailored to specific fields of application (e.g. Siemens
Siplus CMS for condition monitoring of motors, generators, pumps, etc., CM4810 from B&R
for condition monitoring at control system level or PUMon [5] for process monitoring in the
chemical industry). Regarding the algorithms used in PUMon, which have been developed at
Fraunhofer IOSB as part of the ProDaMi suite, there are already approaches for a generalization
to other fields of application, such as monitoring of wind turbines.

In the described assistance systems, a conflict between the bandwidth of application
possibilities and the required configuration effort can be observed. The price for a high level of
flexibility in possible application areas is usually costly and time-consuming manual engineering.
An approach to close this gap is the development of self-learning assistance functions, which,
because of their learning capability, can be integrated into existing automation systems without
extensive configuration.

3. Assistance functions
In the following section, particular assistance functions and the interaction between these
assistance functions are described.

3.1. Data-driven process modelling
Data-driven process modelling allows the flexible use of smart assistance functions in complex
automation systems. With this approach, process models are learned from process data and
are used for diagnosis (section 3.2) and process optimization (section 3.3). With increasing
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complexity of industrial processes and the resulting data, manual generation of such process
models is no longer practical and, furthermore, very time-consuming and prone to errors. The
development of robust methods for automatic model learning from process data is becoming
increasingly important. In these approaches, the interaction between continuous and discrete
process variables must be considered. In many applications, distinct system states and modes
can be observed, which alter as discrete process variables (such as switching signals) change.
Especially the automatic learning of process models for discrete system elements has not, to
date, been researched in great detail. Approaches to this task are ALERGIA [6], MDI [7], RTI+
[8], HyBUTLA [9] and OTALA [10]. In general, temporal dependencies must be considered in
addition to the static dependencies between process variables. A further challenge consists in
automatic learning of the structure of process models in addition to the model parameters.

Furthermore, continuous process behaviour such as energy consumption has to be taken into
account. The continuous process behaviour is modeled with, among others, differential and
difference equations, equivalent state space models, neural networks [11], self-organizing maps
[12] or stochastic models such as Kalman filters (e.g. [13], [14]), particle filters (e.g. [15]) or
Hidden Markov Models (e.g. [16]). In order to describe hybrid processes, such models are learned
for each system state (the states of the machine shown in Fig. 2) from continuous process data.

The learning of energy consumption in the modes of a hybrid automaton is considered in
section 3.1.1. The MoSDA algorithm [17] allows automatic learning of separated component
models of hybrid industrial processes that can be used for both anomaly detection and the
identification of causes for anomalies (see section 3.1.2). MapReduce technology is applied to
learn the proposed process models from large amounts of data (see section 3.1.3).

3.1.1. Learning the energy consumption in the modes of hybrid automata: The learning of
energy consumption in the modes of a hybrid system has been considered in [14]. The underlying
system behavior is modelled in this approach with an automaton. The automaton consists
of discrete system states which determine the system behavior. Transitions between system
states are triggered by discrete events, e.g. control signals such as switch on/off or open/close
valve. Model learning algorithms such as OTALA [10] can be applied to learn the automaton.
The principle of the OTALA algorithm consists in creating a new state for each combination
of discrete signals which occurs in the data. Transitions are inserted between states which
correspond to subsequent combinations of discrete signals in the input data. The energy
consumption in each particular mode of a hybrid automaton can be modelled as a sequence
of linear state space models. Switches between the linear state space models account for
non-linearities or switches in the energy consumption. The learning of state space models
ME1,ME2, . . . consists of two steps (see Fig. 1):

In step 1, splitting points are detected (vertical dotted lines in Fig. 1) where the state space
models are assumed to switch. In this work, a time series analysis based on a moving average
(MA) method [18] is employed to obtain predictions ŷ(k) for the measured energy consumption
y(k). Splitting point candidates are detected for |ŷ(k)− y(k) > yS | with the given threshold
yS . In order to reduce the number of splitting points, adjacent splitting point candidates are
removed. More precisely, splitting point candidates with a distance less than a given parameter
δS are merged. In doing so, the first and the last splitting point in a time series of adjacent
candidates is preserved in each case.

In step 2, linear state space models are learned for each time segment between two splitting
points. The energy consumption in each time segment s is described with a linear state space
model MEs (a standard random walk model). The linear models are learned from a sequence of
training data y(k) which is observed in the respective time segments. Expectation-maximization
(EM) is employed for parameter estimation (see [19]).
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Figure 1. Model-based fault detection

3.1.2. Component-based process models: The algorithm MoSDA [20] exploits a typical situation
for cyber-physical production systems: Anomalies often refer to anomalous observations on the
system-level, e.g., an anomalous energy consumption of the production system as a whole.
MoSDA leverages on the fact that these observations create an over-determined system and
MoSDA can therefore break down the overall system model to component models. Fig. 2

Figure 2. Automaton of the storage system with separation variables sq,c(S2) and sq,c(S3)

illustrates the functional principle. The underlying system behavior is modelled with an
automaton that can be learned from data as described in section 3.1.1. It is assumed that
state q = S1, S2, . . . determines whether the output yc(k) of component c contributes at time
instance k to the overall output signal

y(k) =
nc−1∑
c=0

sc(k)yc(k). (1)

This is expressed with a separation variable sq,c(q) for each component c in state q which can
be either 0 or 1. In many practical cases, sq,c(q) is known: System mode q determines the
active control signals, the dependency between control signals and components is in many cases
given. However, if sq,c(q) is not known a-priori, sq,c(q) can be learnt from training data, e.g. by
exploitation of correlation as accomplished in [21]. In this paper, we consider components c where
the output signal yc(k) of a component is a function of two input signals xc(k) = (x1,c, x2,c) at
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each time instance k. This approach can be extended straightforwardly to an arbitrary amount
of input and output signals. Output yc(k) is approximated by the quadratic function

yc(k) = θc0 + θc1x1,c(k) + θc2x2,c(k) + θc1,1x1,c(k)2 + θc2,2x2,c(k)2 + θc1,2x1,c(k)x2,c(k) (2)

with coefficients θc0, θ
c
1, θ

c
2, θ

c
1,1, θ

c
2,2 and θc1,2 which can be efficiently computed by solution of a

linear over-determined optimization problem (see [17]).

3.1.3. Efficient model learning with MapReduce technology: MapReduce technology allows
efficient model learning from large amounts of historical data (see e.g. [22]). The principle
is illustrated in Fig. 3. Data is stored in a distributed filesystem in order to process splits of the
input data on several host machines. A user-defined map function processes the records of each
split and assigns the output to a key. Data is shuffled according to the keys and processed with
a user-defined reduce function. Application of MapReduce technology to model learning for
the OTALA algorithm described above is straightforward. Pairs of subsequent observations are
processed in the map function in order to extract information for each transition (e.g. transition
times) which is assigned to unique transition keys. The keys are computed from the discrete
signals which change between the two observations. The transitions are shuffled according to
the transition keys and are processed in the reduce function (e.g. distributions of the transition
times are calculated) in order to build the final automaton. A great deal of model learning
algorithms allow for parallelization in a similar fashion.

Figure 3. MapReduce technology

3.2. Fault Detection
Reliable fault detection allows costs and risks to be reduced through the early detection of
faults and problems in the process and by preventing component failures and, in extreme cases,
a production stop of the entire plant.

The principle of model-based fault detection in the operating phase (see Fig. 4) consists
of comparing the plants actual behavior with its behavior as predicted from the process
models. The process models can be learned from process data collected about the plant and its
components in normal, fault-free operation, as described in section 3.1. This allows the detection
of, on one hand, discrete events that are incompatible with the learned process models [23], and,
on the other, deviations of the continuous behavior from the predicted process behavior.

For the latter, stochastic models can be used (see section 3.1.1). Measurements y(k) are
predicted in this approach according to a stochastic process model with input u(k). A common
approach to fault detection is the evaluation of the residuals r(k) = y(k) − ŷ(k) between
measurements y(k) and predictions ŷ(k). Methods such as log-likelihood ratios, generalized
log-likelihood ratios, sequential probability ratio tests, or cumulative sum test statistics are used
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Figure 4. Model-based fault detection

in literature to detect changes in the residuums (see [24]) for an overview). A related approach is
the evaluation of y(k) with respect to the conditional probability density p(y(k)|y(0) . . . y(k−1))
(see e.g. [14], [17]). Observations are assumed to be improbable once measurement y(k) at
discrete time k drops out of a given confidence interval. This is the case for [14]

F (y(k)) <
1

2
− C

2
or F (y(k)) >

1

2
+
C

2
(3)

where F (y(k)) =

∫ y(k)

−∞
p(ỹ(k)|y(0) . . . y(k − 1))dỹ(k)

denotes the distribution function of p(y(k)|y(0) . . . y(k − 1)) and C the width of the confidence
interval (C ∈ [0, 1]). Measurements beyond a confidence interval of width C = C1 are detected
as potential faults. In this case, anomaly f1(k) is reported for time instance k. Furthermore,
anomalies with a duration of more than one time instance are taken into account as suggested in
[8]. Measurements beyond a confidence interval of width C = C2 are considered as candidates
for such anomalies. If at least a given portion pd of the last nd measurements are beyond
the confidence interval of C2, anomaly f2(k) is reported. Evaluation of (3) requires an adequate
model for the process behaviour that essentially determines in which way the probability density
p(y(k)|y(0) . . . y(k − 1) is obtained. A general approach is the application of discrete time
nonlinear state space models (see e.g. [14], [15], [25]) that are specific for particular states or
components of the hybrid automaton:

y(k) = h(x(k), u(k)) + v(k)

x(k) = f(x(k − 1), u(k)) + w(k) (4)

where f and h are the state and measurement dynamic functions, respectively. The two
equations consider uncertainties in the form of additive terms for measurement noise v(k)
and state transition noise w(k). The continuous system behaviour is modelled with a time-
variant state vector x(k). The random walk model introduced in section 3.1.1 and the system
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model introduced in (1) are special cases of this general state space model. The component
models which are learnt by the MoSDA algorithm (see section 3.1) enable beside fault detection
the location of faults by relating the faults to particular components (see section 3.1.2). The
application of component models for model-based fault detection is evaluated in section 5.1.

3.3. Energy Efficiency Optimization
Another field of application for smart assistance systems is the self-optimization of industrial
processes. The goal here is to analyze and improve the performance and efficiency of a plant to
optimize its operation. In particular the energy efficiency optimization of industrial automation
systems is becoming increasingly relevant, driven by rising energy prices and political targets
[1]. In existing plants, interventions in the process usually consist of manual stopping, energy-
efficient time planning of the production steps in the MES system, or control actions at 15-
minute intervals [26]. To date, little research has been carried out regarding active methods
to implement real-time optimization at second or millisecond intervals, even though, due to
their process dynamics, many applications require process parameters to be rapidly adapted
to changing operating conditions. First approaches have been developed for stopping the
plant based on energy data [27], for reducing reactive power and for controlling energy in
Smart Grids [28]. Another approach is based on the use of predictive process models that
can be learned with the methods described in section 3.1. The process models allow the future
process behavior to be predicted for various parameter combinations in order to determine the
optimum process parameters. Optimization is accomplished with respect to the energy and
load management of electrical drive systems, which are the most voracious energy consumers,
especially in transportation and logistics applications.

Figure 5. Energy flow between two drives [29]

The basic optimization problem is illustrated in Fig. 5 for two drives. The main optimization
aim in this application is to minimize the overall energy consumption y0(k) and y1(k) of the
two converters (EL,WR) and motors (EL,mot) for time instances k = 0 . . . n − 1. In addition,
the energy fed back Eg(k) into the internal DC link or the grid (i.e. the difference between
regenerative and motive power) is to be minimized. To this end, energy consumption and
energy fed back are weighted with factor λ according to the primary usage of power fed back
(consumption at braking resistances, regenerative feedback to the mains, and temporary storage
in capacitors). Altogether, optimal driving speeds v of the conveying system can be obtained
as solution of the following optimization problem [20]:

v = argmin

{
n−1∑
k=0

nc−1∑
c=0

yc(k) + λ
n−1∑
k=0

Eg(k)

}
(5)
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where yc(k), c = 0 . . . nc − 1, nc = 2, denote the output variables of the component models
of the particular drives (see (2)) which are functions of velocities x1,c(k) and accelerations
x2,c(k) for the given application case. Optimization constraints regarding energy flows and the
sequences of movements (starting position, end position, speed limits, and positioning time) are
detailed in [20]. The overall optimization problem is a mixed integer quadratically constrained
problem (MIQP) that can be efficiently solved with standard methods. Evaluation results for
energy-efficiency optimization of movements in conveying systems by solution of the exposed
optimization problem are given in section 5.2.

3.4. Interaction of the assistance functions
In this section, the interaction of the introduced assistance functions is outlined for the example
of the drive system shown in Fig. 5. The overall system model (see (1)) with output variable

y(k) =
nc−1∑
c=0

sc(k)yc(k) (6)

is composed of nc (nc = 2 for the example) component models with output variables yc(k)
according to (2). Switching variables sc(k) have been introduced in section 3.1.2. The
system model is obtained from training data by application of the MoSDA algorithm. Energy
efficient movements of the drives are calculated by solution of optimization problem (5) with
respect to optimal velocities v and constraints detailed in [20]. Furthermore, anomalous energy
consumption of the drive system is detected by evaluation of

F (y(k)) =

∫ y(k)

−∞
p(ỹ(k)|y(0) . . . y(k − 1))dỹ(k) (7)

in (3) for probability density

p(y(k)|y(0) . . . y(k − 1)) = N
(
y(k);

nc−1∑
c=0

sc(k)yc(k), σ

)
(8)

where standard deviation σ of the prediction error is obtained from training data.

4. Architecture and integration
The flexible use of an assistance system in different industrial environments requires the simple
integration of the system in various automation systems. Furthermore, an uncomplicated
connection of application-specific user interfaces is required. Besides, aspects such as
configurability, modularization capability and scalability have to be taken into account. In
proKNOWS - an assistance system developed at Fraunhofer IOSB-INA - these requirements are
met through the software architecture shown in Fig. 6.

A unified system interface based on OPC UA allows an abstraction of the assistance functions
from heterogeneous networks and data acquisition methods. This, in turn, allows the assistance
system to be connected to a wide range of plants and automation systems. The assistance system
interfaces with the particular automation systems through OPC UA, with OPC DA servers, or
particular instruments and controls or data loggers being integrated through corresponding
interfaces. Interfaces for CSV and SQL are also implemented.

The assistance functions implemented in the modeling engine can be run on a central server
in real time. In the modeling engine, the data-driven process modeling methods described in
the previous sections (HyButla, OTALA, MoSDa, switching state-space models, and electrical
drive models) are implemented for fault detection (see e.g. [23] and [14]), fault localisation [17])
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Figure 6. Architecture of proKNOWS

and for process visualization. The modeling engine uses a simple structure model of the plant,
which can be configured manually in XML with little effort. The plant structure is split into
separate modules. The behavior of these modules is described with process models, on which the
represented assistance functions are executed. The process models can be learned automatically
from process data, as described in section 3.1. These approaches allow the assistance system to
be flexibly adapted to various processes.

The presentation layer converts representations of the process models and results of
analysis into a simple exchange format which essentially consists of vector graphics and status
information. This provides a convenient way of displaying the relevant information on various
user interfaces. In addition to the control panel, these could include mobile apps for particular
plant modules, which can be selected specifically for application cases such as commissioning
or troubleshooting. A Hadoop engine allows for efficient model learning from large historical
databases and provides a framework for efficient analysis of big data. The proKNOWS tool
box also contains an optimization engine, in which the methods described in section 3.3 are
implemented.

5. Evaluation Results
The introduced assistance functions have been evaluated in several research projects on
demonstrators of the Lemgo Smart Factory (LSF), such as a bulk goods processing module
(Fig. 7 a) and a conveying system (Fig. 7 b).

The structures of the learned process models for each of the demonstrators differ in terms of
system states, transitions and characteristics of the continuous system variables. Typical faults
in the represented application cases are errors in the discrete event system, for example delayed
switching processes or signal failures, and deviations of continuous signals from their expected
trend, such as unexpectedly high or low power consumption by drives or heater fans. Evaluation
results for the assistance functions outlined in section 3.4 are presented in the subsequent
sections.
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Figure 7. a) Module for bulk goods processing b) Conveying system

5.1. Fault Detection
The separated component models, which have been learned in section 3.1.2, have been employed
for both fault detection and diagnosis. The proposed methods have been evaluated in the
research conveying system depicted in in Fig. 7 b). The system comprises five conveyor belts
and seven drives, which are used to move objects between four storage positions on two levels
(five drives for horizontal movements and two drives for vertical movements). A power meter
continuously captures the overall power consumption. Further sensor information is collected
via the programmable logic controller (PLC) of the storage system (Lenze Control 3200 C). For
evaluation, process cycles have been recorded, in which an object has been moved between two
positions of the conveying system. Faults have been artificially added to 10 process cycles of
the conveying system. The created faults differ with respect to position (start time), duration
(temporal length) and offset (signal jump or signal drop). The offset is assumed to be constant
for each fault.

Fault detection has been accomplished with the method outlined in section 3.4. Results for
10 different durations are averaged with respect to the 10 test cycles, five different offsets and
20 randomly selected positions for each test cycle. The F-measure, i.e. the harmonic mean of
sensitivity and precision, was calculated as performance metric.

Figure 8. Fault detections results for different fault lengths

Fig. 8 shows the fault detection results for the novel separation approach (straight line).
Further, the results for the baseline method without separation (see [11]) are depicted (dashed
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line). In the test case, significantly improved F-measures are achieved with the separation
method. In total, the F-measure improved from 0.75 to 0.81. The introduced component
models further allow for diagnosis by relating faults to particular components.

5.2. Optimization
Initial experimental results for the optimization approach introduced in section 3.3, which is
summarized in section 3.4, are shown in Fig. 9. The graphs show the speed v(t) and position
x(t) for a belt conveyor with a rated power of 470W as a function of time t. The movement
sequence of the belt conveyor was optimized for given workpiece start and end positions and
for given constraints regarding speeds v(t). As can be seen in Fig. 9, the optimization results

Figure 9. Optimization results

in a movement profile in which acceleration of the conveyor decreases with velocity. For the
shown application case, energy consumption was reduced from 5988Ws to 5557Ws compared
to a movement profile with maximum acceleration and deceleration, i.e. energy savings of 7.2%
were obtained. Joint optimization of two drives results in a motion profile in which the first drive
is decelerated exactly during the second drives acceleration phase. In this application case, the
complete regenerative energy of the first drive could be recovered as input for the second drive.
Hence, the automatic coordination of motor speeds leads to cancellation of undesired feedback
of energy.

6. Conclusion
Because of the increasing complexity of industrial automation systems, process control and
monitoring is becoming increasingly challenging. It is therefore desirable to support users in
these tasks with smart assistance systems that can take over some of the key tasks. To date
there are many partial, but not yet any integrated solutions available. To close this gap, various
aspects of smart assistance systems have been integrated, including the system interface and the
learning of process models as basis for various assistance functions, such as process monitoring
and optimization. The described approaches have proven to make the complexity in automation
better manageable, thereby sustainably increasing the productivity of industrial processes.
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