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Abstract. One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress 

that arises from nonuniform temperature field. The effort of steam turbine operator is to 

operate steam turbine in such conditions, that rotor thermal stress doesn’t exceed the specified 

limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the 

rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress 

plays important role during turbine cold startup, when occur the most significant differences of 

temperatures through rotor cross section. The temperature field can’t be measured directly in 

the entire rotor cross section and standardly the temperature is measured by thermocouple 

mounted in stator part. From this reason method for numerical solution of partial differential 

equation of heat propagation through rotor cross section must be combined with method for 

calculation of temperature on rotor surface. In the first part of this article, the application of 

finite volume method for calculation of rotor thermal stress is described. The second part of 

article deals with optimal trend generation of thermal flux, that could be used for optimal 

machine loading.  

Notation 
a  thermal diffusivity 𝑇𝑆𝑘 thermal stress of rotor 

𝑐𝑟 specific heat capacity 𝑇𝑆𝑚𝑎𝑥
𝑘   upper limit of maximum of permissible 𝑇𝑆𝑘  

𝑛𝑗, 𝑛𝑖 normal vector 𝑇𝑀𝐼𝑘 mean integral temperature 

m  mass V  volume 

𝑞(𝑡), 𝑞𝑘 heat flux 𝑉[𝑖]  volume of element i  

𝑄 heat  z   coordinate corresponding to rotor length 

𝑑𝑄  amount of obtained/lost heat   𝜌  density of material  

r  radius from rotor (cylinder) center 𝜑  rotation angle 

𝑅[𝑖] radius from rotor center to node i 𝜏  time constant of filter 

S area 

𝑆𝑖, 𝑆𝑖−1  i-th control volume surfaces 

𝑡 time 

∆𝑡 sampling period 

T temperature 

𝑑𝑇, ∆𝑇 temperature change 

𝑇𝑖
𝑘 temperature in layer (node) i in time point k 

𝑇𝑛
𝑘 measured temperature (in time point k) 

𝑇_𝑓𝑖𝑙𝑡𝑛
𝑘 filtered inlet temperature 
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1. Introduction 

Currently, the power industry development is divided into two main areas. The first area is aimed to 

the problem of depletion of non-renewable resources associated with gradually replacement by 

renewable resources. The second area is aimed to achieving of higher efficiency, durability and 

reliability of machines producing the electricity power. Both areas are associated with requirement of 

monitoring and diagnostics of machines, because early detection of possible faults can prevent 

machine fault and minimize associated economic losses. Some serious problems of steam turbine 

operation, for example high vibrations due to bend rotor or rotor/stator rub are related to inappropriate 

heating of rotor during machine startup. The non-uniform thermal field around rotor surface is also 

associated with rotor thermal stress. Generally, the largest thermal stress occurs during the turbine 

startup from the cold state – i.e. turbine run-up on the operating speed and especially on the respective 

nominal power. In ideal situation the machine startup is archived as fast as possible, without threat of 

machine operation, but thermal stress limits must be taken account. The first aim of this article is 

development of method for evaluation of thermal stress of the rotor based on temperature 

measurement in stator part of machine, because it is not possible to measure rotor surface temperature 

directly. The assumption for evaluation of rotor surface temperature from measurement of temperature 

in stator part is the same thermal conductivity of rotor and stator part - effects of flowing steam are in 

this article neglected. Because the only one thermocouple was used for stator temperature 

measurement, therefore the analysis is made only for 2D case (i.e. rotor cross section). The second aim 

of this article is development of algorithm for calculation of optimal thermal flux which can be used 

for evaluation machine run-up RPM and power trend. 

 

 

2. Calculation of thermal field and thermal stress of the rotor 

2.1.  Heat equation in cylindrical coordinates 

Differential equation of the heat conduction in cylindrical coordinates (for rigid homogeneous 

substance without internal heat resources), which describes a temperature distribution in the space (i.e. 

in the cylinder – in the rotor) and across time is as follows [2], [4], [11]: 

𝜕𝑇

𝜕𝑡
= 𝑎 (

𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
+

1

𝑟2
𝜕2𝑇

𝜕𝜑2
+
𝜕2𝑇

𝜕𝑧2
), (1) 

 

where T is a temperature, 𝑡 is a time, a is a thermal diffusivity, r is a radius from the cylinder center 

(rotor), 𝜑 is a rotation angle and coordinate z corresponds to the rotor length. Because the subject of 

interest in our case is only temperature distribution in the cross section of the rotor, the term 
𝜕2𝑇

𝜕𝑧2
 in 

equation (1) is zero. For 3D case (also in the z-direction) it would be required to use an additional 

thermocouple. Assumption of rotor thermal symmetry leads to independency of temperature T on 

angle 𝜑, and equation (1) can be rewritten in following form: 

𝜕𝑇

𝜕𝑡
= 𝑎 (

𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
). (2) 

 

Analytical solution of partial differential equations of heat conduction can be easily obtained only for 

simple cases and therefore we will use the numerical solution. By a spatial discretization – cross 

section of the rotor on each layer (i.e. annulus, see fig. 1, i-th layer), by a time discretization and by an 

application of finite volume method the system of algebraic equations for the calculation of 

temperatures in the individual layers in a given time can be obtained. For completeness the boundary 

conditions must be defined. The first boundary condition leads from rotor thermal field symmetry: 

𝜕𝑇

𝜕𝑟
= 0.  (3) 
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The second boundary condition is given by information from thermocouple in stator part. For equal 

rotor and stator thermal conductivity one can expect the same temperature in appropriate rotor layer.  

 

 

fig. 1: Spatial (rotor) discretization, i-th layer  

 

2.2.  Finite volume method 

In this section will be derived equations for the temperature calculation in the i-th layer resp. in the i-th 

node (i=2,..,(n-1)) [5], [6], [9]. Relations for calculation of temperatures in nodes 1 and (n+1) will be 

derived later. Consider rotor like cylinder with unit height. Let divide this cylinder is into (n+1) 

elements – called control volumes (i.e. annulus with unit height, see fig. 1), which don’t overlap each 

other. In the geometric center of each element (control volume) is located computing node (except for 

layer (n+1)). The temperature at any point of control volume is equal to the temperature in the 

computing node. Temperature calculation in the rotor cross section (at given time) runs across (n+1) 

nodes, where node 1 corresponds to the rotor geometric center, node n corresponds to the 

thermocouple location and  node (n+1) corresponds to the rotor surface. Equation (2) can be written in 

the following form: 

1

𝑎

𝜕𝑇

𝜕𝑡
=
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
). (4) 

By  integration over the volume V we get: 

∫
1

𝑎

𝜕𝑇

𝜕𝑡𝑉
𝑑𝑉 = ∫

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
)

𝑉
𝑑𝑉. (5) 

For further derivations the Gauss theorem will be used: 

∫
𝜕𝜙𝑗

𝜕𝑥𝑗
𝑑𝑉 = ∫ 𝜙𝑗𝑛𝑗𝑑𝑆𝑆𝑉

,      𝑛𝑗 = [𝑛𝑥 𝑛𝑦 𝑛𝑧]
𝑇
, (6) 

where S is the area and 𝑛𝑗 is the normal to the area. Term  
𝜕𝑇

𝜕𝑡
 in equation (5) is approximated by the 

backward difference and on the right side the Gauss theorem is applied: 

1

𝑎

𝑇𝑖
𝑘−𝑇𝑖

𝑘−1

∆𝑡
∫ 𝑑𝑉
𝑉

= ∫
1

𝑟
𝑟
𝜕𝑇

𝜕𝑟
𝑛𝑟𝑆
𝑑𝑆,    𝑛𝑟 = [−𝑛𝑖−1 𝑛𝑖  ]

𝑇  (7) 

 

Flow through the control volume is given by the sum over the surfaces (through one surface heat 

enters into the control volume, through another surface heat leaves the element). Previous equation can 

be rewriten into form: 
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1

𝑎

𝑇𝑖
𝑘−𝑇𝑖

𝑘−1

∆𝑡
𝑉[𝑖] = −∫

𝜕𝑇

𝜕𝑟
𝑛𝑖−1𝑆𝑖−1

𝑑𝑆 + ∫
𝜕𝑇

𝜕𝑟
𝑛𝑖𝑆𝑖
𝑑𝑆, (8) 

where ∆𝑡 is the sampling period, 𝑉[𝑖] is the volume of element i (i=2,..,(n-1)) defined by: 

𝑉[𝑖] = 𝜋 ((
𝑅[𝑖+1]+𝑅[𝑖]

2
)
2

− (
𝑅[𝑖]+𝑅[𝑖−1]

2
)
2

),  (9) 

and 𝑆𝑖 resp. 𝑆𝑖−1 is the i-th control volume surface, through which heat into the element (for example) 

enters resp. leaves, i.e. it is a surface of the respective cylinder. 

𝑆𝑖 = 2𝜋
𝑅[𝑖+1]+𝑅[𝑖]

2⏟        
2𝜋𝑟

1⏟
𝑣

, 𝑆𝑖−1 = 2𝜋
𝑅[𝑖]+𝑅[𝑖−1]

2⏟        
2𝜋𝑟

1⏟
𝑣

.  (10) 

Surface integral of partial derivative of temperature in equation (8) can be approximated by a mean 

value of this function on a given surface: 

1

𝑎

𝑇𝑖
𝑘−𝑇𝑖

𝑘−1

∆𝑡
𝑉[𝑖] = −

𝜕𝑇𝑆[𝑖−1]

𝜕𝑟
𝑆[𝑖 − 1] +

𝜕𝑇𝑆[𝑖]

𝜕𝑟
𝑆[𝑖]  (11) 

 
By approximation of partial derivatives in (11) by backward differencies the final relation for 

calculation of temperature in layer i for time step k can be obtained: 

𝑇𝑖
𝑘 = 𝑇𝑖

𝑘−1 +
𝑎.∆𝑡.𝜋

𝑉[𝑖]
[
𝑅[𝑖+1]+𝑅[𝑖]

𝑅[𝑖+1]−𝑅[𝑖]
(𝑇𝑖+1

𝑘−1 − 𝑇𝑖
𝑘−1) −

𝑅[𝑖]+𝑅[𝑖−1]

𝑅[𝑖]−𝑅[𝑖−1]
(𝑇𝑖

𝑘−1 − 𝑇𝑖−1
𝑘−1)]  (12) 

 

2.2.1. Temperature calculation in the rotor geometrical center 

In following part of the article, the relation for evaluation of temperature in rotor geometric center will 

be derived. From the  assumption rotor thermal symmetry follows that for any time step the 

temperature over all layers has local or global extrema in the rotor center. The mechanism for 

derivation of temperature in the rotor center is the same as for inner rotor layers, but now we use 

simplified partial differential equation: 

 

𝜕𝑇

𝜕𝜏
= 𝑎

𝜕2𝑇

𝜕𝑟2
.  (13) 

 

Let us consider that heat only enters in the first control volume (i.e. cylinder), respectively doesn’t 

flow from it to another element as in the previous case (i=2,..,(n-1)). Flow through the first control 

volume is given by the flow through cylinder surface. Let us defined the first element volume:  

𝑉[1] = 𝜋 ((
𝑅[2]+𝑅[1]

2
)
2

− 𝑅[1]2)  (14) 

and surface through which heat enters/leaves the element:  

𝑆[1] = 2𝜋
𝑅[2]+𝑅[1]

2⏟      
2𝜋𝑟

1⏟
𝑣

.  (15) 

Then is possible to derive the equation for calculation of temperature in the first node (in the 

geometric rotor center): 

𝑇1
𝑘 = 𝑇1

𝑘−1 +
𝑎.∆𝑡.𝜋

𝑉[1]
[
𝑅[2]+𝑅[1]

𝑅[2]−𝑅[1]
(𝑇2

𝑘−1 − 𝑇1
𝑘−1)]  (16) 
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2.2.2. Temperature calculation on the rotor surface 

Finally, it remains to determine the relationship for calculation of temperature in node (n+1). 

Temperature of this node corresponds to the temperature of rotor surface. It is worthy to mention that 

the temperature of node (n+1) doesn‘t belong to the solution of partial differential equation, because 

the boundary condition is the temperature in node n (value measured by thermocouple). The first 

manner of temperature calculation of the rotor surface is based on a formally rewritten equation (12) 

for the layer n, i.e. i = n: 

𝑇𝑛
𝑘 = 𝑇𝑛

𝑘−1 +
𝑎.∆𝑡.𝜋

𝑉[𝑛]
[
𝑅[𝑛+1]+𝑅[𝑛]

𝑅[𝑛+1]−𝑅[𝑛]
(𝑇𝑛+1

𝑘−1 − 𝑇𝑛
𝑘−1) −

𝑅[𝑛]+𝑅[𝑛−1]

𝑅[𝑛]−𝑅[𝑛−1]
(𝑇𝑛

𝑘−1 − 𝑇𝑛−1
𝑘−1)], (17) 

 

where the temperature 𝑇𝑛
𝑘 is measured, term 𝑇𝑛+1

𝑘−1 is to be determined and 𝑉[𝑛] is given by expression 

(9). By modifying of previous equation we get a required relationship to the calculation of temperature 

in the layer (n+1):  

𝑇𝑛+1
𝑘−1 = 𝑇𝑛

𝑘−1 + (
𝑅[𝑛+1]−𝑅[𝑛]

𝑅[𝑛+1]+𝑅[𝑛]
) [

𝑉[𝑛]

𝑎.∆𝑡.𝜋
(𝑇𝑛

𝑘 − 𝑇𝑛
𝑘−1) +

𝑅[𝑛]+𝑅[𝑛−1]

𝑅[𝑛]−𝑅[𝑛−1]
(𝑇𝑛

𝑘−1 − 𝑇𝑛−1
𝑘−1)]   (18) 

 

Calculation of temperature in the layer (n+1) according to (18) may come across the following 

problem. Thermal processes are generally slow processes. In the case of rough quantisation level of 

measured temperature, the values of 𝑇𝑛  in two consecutive time steps may equal. If such situation 

occurs, the resulting evolution of calculated variable 𝑇𝑛+1 over time shows significant fluctuations 

(high variance of signal), see the gray curve on fig. 2. This behaviour does not correspond to slow 

thermal processes.  

 

fig. 2: Temperature progress in the (n+1). layer 

 

One option for elimination of this problem consists of filtration of measured temperature 𝑇𝑛 

by appropriate filter. This filtering smooths 𝑇𝑛 and avoid the temperature equality in two consecutive 

time steps. In our work we used second order filter: 
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𝐹(𝑝) =
1

(𝜏𝑝+1)2
,  (19) 

where 𝜏 = 1s. After discretization by Tustin approximation the resulting equation for filtered 

temperature calculation in time step k is as follows: 

𝑇_𝑓𝑖𝑙𝑡𝑛
𝑘 =  

−2(∆𝑡−2𝜏)𝑇_𝑓𝑖𝑙𝑡𝑛
𝑘−1

(2𝜏+∆𝑡)
−
(∆𝑡−2𝜏)2𝑇_𝑓𝑖𝑙𝑡𝑛

𝑘−2

(2𝜏+∆𝑡)2
+

∆𝑡2𝑇𝑛
𝑘

(2𝜏+∆𝑡)2
+
2∆𝑡2𝑇𝑛

𝑘−1

(2𝜏+∆𝑡)2
+

∆𝑡2𝑇𝑛
𝑘−2

(2𝜏+∆𝑡)2
  (20) 

where 𝑇𝑛
𝑘 is the measured temperature, 𝑇_𝑓𝑖𝑙𝑡𝑛

𝑘 is the filtered inlet temperature and ∆𝑡 is the sampling 

period. From fig. 2 it is evident that the resulting temperature 𝑇𝑛+1 has a significantly smoother 

character than temperature waveform 𝑇𝑛+1 in case without filtered 𝑇𝑛, see red curve. 

 

As mentioned, the node (n + 1) is located at the border of control volume (not in the 

geometric center). In the case of finite volume method values are on the border of control volumes 

obtained by interpolation. Because the node (n + 1) is boundary node of the edge control volume, it is 

necessary to use the extrapolation. Extrapolation was chosen as linear – line passing in the points 

𝑅[𝑛] and 𝑅[𝑛 − 1] through values 𝑇𝑛 and 𝑇𝑛−1. The equation for calculating of temperature in the 

layer (n+1) by linear extrapolation is as follows [8]: 

𝑇𝑛+1
𝑘−1⏟
𝑦

=
(𝑇𝑛
𝑘−1−𝑇𝑛−1

𝑘−1)

(𝑅[𝑛]−𝑅[𝑛−1])⏟      
𝑎

𝑅[𝑛 + 1]⏟      
𝑥

+ 𝑇𝑛
𝑘 −

(𝑇𝑛
𝑘−1−𝑇𝑛−1

𝑘−1)

(𝑅[𝑛]−𝑅[𝑛−1])
𝑅[𝑛]

⏟              
𝑏

  (21) 

The resulting temperature waveform is shown in fig. 2 (blue curve). From the figure it is evident that 

the linear extrapolation eliminates the significant fluctuations problem. Trends of both curves 

(according to (18) and linear extrapolation) are similar. Therefore the linear extrapolation can be also 

used for calculating of temperature in the layer (n+1). 

 

2.3. Explicit and implicit version of finite volume method 

In this section the major difference between implicit and explicit version of the above method will be 

marginally mentioned. Note, that the above method is an explicit version. During deriving of formula 

for temperature calculation in the layer i in the time point k, the partial derivative 
𝜕𝑇𝑆[𝑖−1]

𝜕𝑟
 resp. 

𝜕𝑇𝑆[𝑖]

𝜕𝑟
 

was approximated by difference, which containes the temperatures 𝑇𝑖−1
𝑘−1, 𝑇𝑖

𝑘−1a 𝑇𝑖+1
𝑘−1 in time (k-1), 

see (12). If the temperatures 𝑇𝑖−1
𝑘 , 𝑇𝑖

𝑘 and 𝑇𝑖+1
𝑘  (in the time point k) were inserted into relevant 

expression then the calculation of temperature distribution in the rotor cross section would lead to the 

system of equations (vs. a simpler aforementioned recursive relationship). Both versions of the method 

have advantages and disadvantages. Of course, solving of the system of equations is more memory 

and computationally demanding, but on the other hand the stability of the explicit version isn’t always 

guaranteed. 

 

2.4. Thermal stress and mean integral temperature 

As mentioned, the thermal stress occurs due to nonuniform temperature field. Thus, let’s define 

thermal stress as a deviation of highest temperature in the rotor cross section from the average of the 

temperature field [1], [3], [7]. Because the thermal stress is particularly significant during the turbine 

startup (external rotor heating), it is often assumed that the highest temperature occurs just in the layer 

(n+1). Thermal stress can be written as a following relationship: 

𝑇𝑆𝑘 = 𝑇𝑛+1
𝑘 − 𝑇𝑀𝐼𝑘  (22) 
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where 𝑇𝑀𝐼𝑘 is the mean integral temperature representing the average temperature across all layers 

(control volumes). The every control element has different volume – different weight, therefore the 

calculation of 𝑇𝑀𝐼𝑘 is carried out as a weighted average. Mean integral temperature is given by: 

𝑇𝑀𝐼𝑘 =
∏ 𝑇𝑖

𝑘𝑉[𝑖]𝑛+1
𝑖=1

∑ 𝑉[𝑖]𝑛+1
𝑖=1

=
𝑇1
𝑘𝑉[1]+𝑇2

𝑘𝑉[2]+..+𝑇𝑛
𝑘𝑉[𝑛]+𝑇𝑛+1

𝑘 𝑉[𝑛+1]

𝑉[1]+𝑉[2]+..+𝑉[𝑛]+𝑉[𝑛+1]
  (23) 

where the volume 𝑉[𝑛 + 1] is: 

𝑉[𝑛 + 1] = 𝜋 (𝑅[𝑛 + 1]2 − (
𝑅[𝑛+1]+𝑅[𝑛]

2
)
2

)  (24) 

2.5. Application and evaluation on the 60 MW steam turbine 

Firstly, the application and evaluation is based on the above knowledge of simulated heat propagation 

in the rotor cross section. This simulation was compared with performed simulation in software Ansys. 

Note that the results of both simulations were perfectly coincided – the deviations of calculated 

temperatures (in space and in time) were in the order of hundredths of a °C or less. Then the above 

knowledges were applied for analysis of signals measured on the 60 MW steam turbine. The 

application results are shown in data comprising startup of the turbine from the cold state. Note that 

the rotor cross section was discretized into 26 layers (i.e. n = 25) and the thermocouple was located 8 

mm under the inner turbine body surface – stator. Calculation of temperature field together with 

thermal stress was cyclically carried with a period of 0.5 sec (i.e. ∆𝑡 = 0.5). In fig. 3 the time 

progresses of temperature in the various layers using color scale (in °C) are shown, where the progress 

of layer 25 corresponds to the measured values of the thermocouple. Red curve shows the waveform 

of mean integral temperature TMI and the blue one shows the thermal stress TS. Due to external rotor 

heating the TMI is gradually increasing and then stabilizes at around 428 °C. Thermal stress increases 

till 8000 sec., then returns to zero by heating the rotor gradually. 

 

fig. 3: Progress of the rotor temperarture field and TMI and TS waveforms  
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3. Generating an optimal trend of steam turbine loading 

One of the basic requirements for the turbine startup is achieving of the operating speed and 

corresponding nominal power in the shortest possible time without exceeding the specified thermal 

stress limits. Thermal stress is closely related to the amount of obtained/lost heat per time (i.e. change 

of temperature field). This change describes a heat flux variable [4], [10]: 

𝑞(𝑡) =
𝑑𝑄

𝑑𝑡
  (25)  

Previous formula can be modified and applied to our case (𝑑𝑄 - unknown). From equation for 

calculating of the specific heat capacity, [11]: 

𝑐𝑟 =
1

𝑚

𝑑𝑄

𝑑𝑇
  (26) 

the 𝑑𝑄 can be expressed and put into the (25) where 𝑐𝑟 is the specific heat capacity and 𝑑𝑄 is the 

amount of heat that the body (in our case rotor) obtain/lost with mass m to its temperature changed by 

𝑑𝑇. Then we can get: 

𝑞(𝑡) =
𝑐𝑟.𝑚.𝑑𝑇

𝑑𝑡
 (27) 

Previous equation can be discreetly rewritten as follows: 

𝑞𝑘 =
𝑐𝑟.𝑚.∆𝑇

∆𝑡
=
𝑐𝑟.𝜌.𝑉.(𝑇

𝑘−𝑇𝑘−1)

∆𝑡
 (28) 

where ∆𝑡 corresponds to the sampling period (∆𝑡 = 0.5), 𝜌 is the density of material and V represents 

the volume which is given as a sum of all the elementary volumes V[i]. Because the temperature field 

of the rotor is generally inhomogeneous in the time point k resp. k-1, we can replace the temperature of 

the body (rotor) 𝑇𝑘 resp. 𝑇𝑘−1 with the average temperature – mean integral temperature 𝑇𝑀𝐼𝑘 resp. 

𝑇𝑀𝐼𝑘−1. Equation (28) can be rewritten into the following form: 

𝑞𝑘 =
𝑐𝑟.𝜌.∑ 𝑉[𝑖]𝑛+1

𝑖=1 .(
∏ 𝑇𝑖

𝑘𝑉[𝑖]𝑛+1
𝑖=1
∑ 𝑉[𝑖]𝑛+1
𝑖=1

−
∏ 𝑇𝑖

𝑘−1𝑉[𝑖]𝑛+1
𝑖=1
∑ 𝑉[𝑖]𝑛+1
𝑖=1

)

∆𝑡
=
𝑐𝑟.𝜌.(∏ 𝑇𝑖

𝑘𝑉[𝑖]𝑛+1
𝑖=1 −∏ 𝑇𝑖

𝑘−1𝑉[𝑖]𝑛+1
𝑖=1 )

∆𝑡
  (29) 

According to equation (29) the heat flux into the rotor based on the known temperature field in the 

time k can be calculated, thus the real increase (or decrease) of heat in the rotor per time ∆𝑡. Note that 

the volume V (resp. partial volumes V[i]) is defined as a cylinder with unit height in our case. Then the 

variable 𝑞𝑘 (see (29)) can also be called as the linear heat flux density. 

  

As mentioned, the thermal stress is related to the time change of heat in the rotor. The 

formula (29) will be utilized to generate such a trend of heat flux (resp. linear heat flux density), that 

would be optimal from the turbine startup point of view – i.e. the actual rotor thermal stress reaches 

the upper boundary of the established limit (without exceeding this limit). Because there must be 

satisfied a number of operational rules during the turbine startup, then the optimal value of heat flux 

can be generated just one time step ∆𝑡 forward. In the each time point k it is therefore necessary to 

calculate the value of the heat flux  𝑞𝑘+1, which will lead in the following time point (k+1) to equality 

of actual thermal stress 𝑇𝑆𝑘+1 with the desired value 𝑇𝑆𝑚𝑎𝑥
𝑘+1  (e.g. the upper limit of thermal stress): 

𝑞𝑘+1 =
𝑐𝑟.𝜌.(∏ 𝑇𝑖

𝑘+1𝑉[𝑖]𝑛+1
𝑖=1 −∏ 𝑇𝑖

𝑘𝑉[𝑖]𝑛+1
𝑖=1 )

∆𝑡
  (30) 

The temperatures 𝑇𝑖
𝑘 (i=1,..,n+1) in the above relationship are known. However, the problem occurs 

with temperatures 𝑇𝑖
𝑘+1 (i=1,..,n+1), because the future progress of temperature field leading to 

equality 𝑇𝑆𝑘+1 = 𝑇𝑆𝑚𝑎𝑥
𝑘+1  is unknown. Let’s start from the equation for calculation of thermal stress in 

the time (k+1).  
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𝑇𝑆𝑘+1 = 𝑇𝑛+1
𝑘+1 − 𝑇𝑀𝐼𝑘+1  (31) 

Using 𝑇𝑀𝐼𝑘+1 according to (23) and 𝑇𝑆𝑘+1 = 𝑇𝑆𝑚𝑎𝑥
𝑘+1  in the previous equation we will get: 

𝑇𝑆𝑚𝑎𝑥
𝑘+1 = 𝑇𝑛+1

𝑘+1 −
∏ 𝑇𝑖

𝑘+1𝑉[𝑖]𝑛+1
𝑖=1

∑ 𝑉[𝑖]𝑛+1
𝑖=1

  (32) 

The unknown variables in equation (32) are again the temperatures 𝑇𝑖
𝑘+1 (i=1,..,n+1). Notice that the 

future progress of temperatures 𝑇1
𝑘+1, . . , 𝑇𝑛−1

𝑘+1 can be forward counted in the time point k in the case of 

explicit version, see equation (12). The same can be performed in the case of implicit version, but the 

calculation again will lead to solve the equation system. In formula (32) only variables 𝑇𝑛
𝑘+1 and 𝑇𝑛+1

𝑘+1 

are remaining as unknown. If 𝑇𝑛+1 is also function of 𝑇𝑛: 

𝑇𝑛+1
𝑘+1 = 𝑓(𝑇𝑛

𝑘+1), (33) 

where f(.) is a general function, e.g linear extrapolation (other expression than (21)): 

𝑇𝑛+1
𝑘+1 = 𝑇𝑛

𝑘+1 𝑅[𝑛+1]−𝑅[𝑛−1]

𝑅[𝑛]−𝑅[𝑛−1]
− 𝑇𝑛−1

𝑘+1 𝑅[𝑛+1]−𝑅[𝑛]

𝑅[𝑛]−𝑅[𝑛−1]
  (34) 

then it is possible to substitute the 𝑇𝑛+1
𝑘+1 in equation (32) and express remaining unknown 𝑇𝑛

𝑘+1. 

Specifically, in the case of linear extrapolation we will get: 

 

𝑇𝑛
𝑘+1 =

𝑇𝑆𝑚𝑎𝑥
𝑘+1 (𝑅[𝑛]−𝑅[𝑛−1])(∑ 𝑉[𝑖])𝑛+1

𝑖=1 −𝑇𝑛−1
𝑘+1(𝑅[𝑛]−𝑅[𝑛+1])(∑ 𝑉[𝑖])𝑛+1

𝑖=1

(𝑅[𝑛+1]−𝑅[𝑛−1])(∑ 𝑉[𝑖])𝑛+1
𝑖=1 −𝑉[𝑛](𝑅[𝑛]−𝑅[𝑛−1])−𝑉[𝑛+1](𝑅[𝑛+1]−𝑅[𝑛−1])

+

(∏ 𝑇𝑖
𝑘+1𝑉[𝑖])𝑛−1

𝑖=1 (𝑅[𝑛]−𝑅[𝑛−1])−𝑉[𝑛+1].𝑇[𝑛−1](𝑅[𝑛]−𝑅[𝑛+1])

(𝑅[𝑛+1]−𝑅[𝑛−1])(∑ 𝑉[𝑖])𝑛+1
𝑖=1 −𝑉[𝑛](𝑅[𝑛]−𝑅[𝑛−1])−𝑉[𝑛+1](𝑅[𝑛+1]−𝑅[𝑛−1])

  (35) 

 

Finally, it remains to calculate the optimal value of the heat flux 𝑞𝑘+1 in the time point k, see (30), 

because all temperatures 𝑇𝑖
𝑘+1 (i=1,..,n+1) are already known (𝑇𝑛+1

𝑘+1 was calculate according to (33) 

resp.(34)). If the actual heat flux into the rotor is successively equal to the generated optimum value 

during the turbine startup (by regulation of amount and temperature of steam), then the actual rotor 

thermal stress moves around the desired value. This situation is demonstrated in fig. 4, where the blue 

line shows the actual waveform of the rotor thermal stress and the red one shows the desired 

waveform of thermal stress (gray line represents the waveform of temperature 𝑇𝑛). For the desired 

waveform of thermal stress the upper limit of the maximum of permissible thermal stress was elected. 

Note that the maximum of steam temperature is limited, therefore the temperature 𝑇𝑛 also stabilizes at 

the appropriate value, see fig. 4. Of course, the thermal stress returns to zero after the entire rotor is 

heated. The heat flux into the rotor is influenced by the temperature and amount of steam – regulation 

of temperature and pressure. 

 

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012044 doi:10.1088/1742-6596/659/1/012044

9



 

 

 

 

 

 

 

fig. 4: Optimal startup of turbine 

 

4. Conclusion 

This paper deals with the calculation of thermal stress of the rotor and generation of optimal steam 

turbine loading trend leading to equality of the actual thermal stress with the desired value. The entire 

problem is based on the calculation of the temperature field in the rotor cross section based on the 

temperature measurement in the inner turbine body – i.e. in the stator. First, using the finite volume 

method the partial differential equations of heat conduction is solved. The formula for calculation of 

temperatures in the inner layers of the rotor was obtained in its geometric center and on the rotor 

surface. Then there was also described the formula for calculation of thermal stress. The obtained 

calculation methods were afterthat applied to analyse signals from the 60 MW steam turbine. Finally, 

a method for generation of the optimum heat flux trend or linear heat flux density into the rotor, that 

leads to the desired behavior of actual thermal stress during the turbine startup, was proposed. Heat 

flux into the rotor is influenced by temperature and pressure of steam in the turbine.  
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