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Abstract. The article proves the separation theorem for optimal control of stochastic systems
in the case when an observed continuous-time process possess memory of arbitrary ration
relating to a state vector.

1. Introduction

The separation theorem [1] is the basis for a theory of optimal control by incompletely observable

stochastic systems. Being fundamental theoretical results, it ensured solving of a number of important

practical problems in a wide range of areas [2, 3]. With the results [4, 5], we provided a generalized

separation theorem in the case when observations have memory of arbitrary ratio, i. e. they depend not

only on current values but also on an arbitrary number of previous values of the system state vector.
Used notations: P{} is event probability; E{} is the mathematical expectation; normal (Gaussian)

density with parameters a and b by N {a; b}; | and tr[-] are determinant and trace of matrix; D! s

the inversion matrix of D; D' denotes transpose of a matrix or a vector; D >0 (D>0) is positive
(non-negative) definite matrix.

2. The problem statement
On a certain probability space (Q, F,.F=(F, )tzo= P) [6] the unobservable Nn-dimensional process X;

(state vector of system) and the observable |- dimensional process z; with continuous time are
determined by the stochastic differential equations (Ito’s differential rule)

dx, = f(t, x,,u, )t + D (t, x, )dw,, te[0,T] (1)

dz, = h{t, X, X, X, z)dt+D,(t)dy; , )
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where u; is I —dimensional control vector, 0<7y <7y <---<73 <t <t, and 7, =const, K —~LN.
It is assumed: 1) w; and v; are r; —dimensional and r, —dimensional standard Wiener processes;
2) Xg, W, V; are jointly independent; 3) f(-), h(), ®;(-), ®,(-) are continuous functions for all

arguments;  4) Q() = CDl(-)CDI () >0, R(-)z (DZ(-)G)E () >0; S)original density is set
Po(X)=6P{x, < x}/ox.
Task: to find control ut0 that provides optimum condition, on the class of th‘" -measurable

functional, where u, =u, [z(t) ], 2 ={z,;0<s<t}

J= E{b(T, X )+ }A(s, Xg,Ug s

po(X)} ~min 3)

where 7> 7y, utTO ={us;rS SST}, b()>0, A()>0.
To solve the set task, let us apply the method of sufficient coordinates [7], assuming that there is

F.’ - measurable process 4, [ZB] that fully characterizes posterior density

p(x)= aP{xt < x|zé} X 4)

of X, system state vector, on the one hand. On the other hand, it can be found by means of p, (x).

Remark 1. We consider that the optimal control dates from momentt, >7,. An arbitrary F’-
measurable process is used as U; on the intervalt € [0, 7]

3. Preliminary results
In accordance with the sufficient coordinates method, we introduce Bellman function

S(t,A)= T? { T,X; ) +jA(t, X g Jt' [, = /1} )

Theorem 1. Let the following conditions be met:
1) process A; is Markov diffusion process with characteristics

a(t, )= lim —E{Mu1 Al (6)

At—0 A
01t 2)= im -+ eflas, s T |2, = ™

where Ad = Aar —A-
2) Let process {Xt ; ﬂt} be Markov process with transition probability density

p(t’,x',/l"t,x,ﬂ,)zazP{xt, <X 2y <X =x4 :l}/éx/(%’ . (3)

Then, Bellman equation for S(t, }t) has the form

rr{y}n{% ;4 [S(t 2) E{AG x,, up)| 4 = A}}=0, 9)

S(t,2)|,_, = Eb(T, x )| 2y = A}, (10)
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where L:’ 1 [] denotes inverse Kolmogorov operator that corresponds to process 4; [6], i.e.
. as(t, 1) 1 2%s(t, 1)
L ;|S(t, 4 t, A +=tr| D(t,A)————2|, 11
lst Al 0.0 A o) 78 an

and the smallest value of performance criterion has the form J° =S(z,1).
Proof- Let

p(X|2)=P{x, <xX|2, = 1}/ex. (12)
Then, by expanding operator E{} into (), and considering condition2), we obtain
S(t,A)=
- %l?{j By (x|/1){f/\(t’, x’,u)p(t’,x’,/l"t, x,/i}ix’d;t’dt/ +{bT, x’)p(t’,x/,/l"t, x,/l)dx’d/l’}dx},

where u; = {us;t <s<T}.
Lemma 1. Accurate to 0(At), the function S(t, 1) satisfies At - recurrence equation

(13)

S(t,A)= ngui}n{j st +at, 2/ )p(t +At, A ‘t,/l)dl” +(At)] At x,u)p; (lel)dx+0(At)}, (14)
where
plt+ At 27t 4)= P, o < 4|3 = 2} 0" (15)

is transition probability density of Markov process 4, .

Proof. Expressing interval [t,T] as [t, T]=[t,t + At]+[t + At, T], we obtain from (13)

S(t,A)= {nrw‘un}slttJrAt )+ S,(t +At, T)}, (16)
S,(t,t+At)=]p, (x|/1>{t+jAtA(t’,x’,u)p(t’,x’,ﬂ"t, X, ﬂ)dx’dﬂ’dt’}dx, (17)
t
S,(t+At,T)=
(18)

= pt(x|/1){ } A(t’,x’,u)p(t’,x’,/l"t,x,ﬂ)dx’d/lldt’ +jb(T, x’)p(t’,x’,/l"t,x,ﬂ)ix’d/ll}dx
t+At
So far as p(t’,x’,l"t, X,A): 5(x/ - x,ﬂ/ —/I), when At4 0 , it follows from (17), that

S,(t,t+At)= (At At x,u)p; (x4 Hx+o(At). (19)

Markov process transition probability density{x,,4,} (see condition 2) satisfies the Chapman-
Kolmogorov equation [8]

p(t’ X i"t, X, l): | p(t’ XA ‘t + At X" A )p(t +at,x", At x, /I)jx”d/l”. (20)
With regard to (12), (15)

7 plt-+at A"t x, A (X )dx = pe, a6 |27 Jolt + at, 4"t 2) @1)
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Then, it follows from (18), (20), (21) that
S,(t+At,T)=

=] p(t +At,ﬂ”|t,l){j ptm(x”‘ﬂ”){ } A(t’,x’,u)p(t’,x’,ﬂ"t,x,/l)dx’d/l’dt’ + (22)
t+At
+ jb(T, x’)p(t’, x’,l"t + AL, x”,/l”)dx’d}t/}dx” }d/l”.
With regard to (19), it follows from (16), that

Sz(t+At,T)+(At)jA(t,x,u)pt(x|/1)jx+o(At)}. 23)

S(t,A)= r?ui}n{!qi

uHA!

Substituting (22) in (23) with regard to (13) leads to (14). Lemma 1 is proved.
We expand

)
Slt+at, 2/ )= s(wm,z){%j A/1+%AAT%MAA+O([AQ]Z) (24)

Then, with regard to (6), (7), (15) it follows, that

[S(t+At, A)plt+ At 2|t A A" =S(t+At, 2), (25)
T
j[Wj Aplt+ At A7)t )42 (%] E{A44 = A=
(26)

_ (m);(%f al)2)+ ofat),

ot PNl ot -] PN L) -

022
) (27)
- (At)n{ j% D(t|/l):| +o(At),
jo([M]2 )p(t +At, A", /I)d/l” = E{o([M]2 ]21 = z}: o(At). (28)

Substitution of (24) in (14) with regard to the latter formulae and (11) leads to the relation
(b'g=g"b,tr[BD]=tr[DB])

s(t,z.):muin{s(t+At,z)+(m)qx[s<t+At,z)]+(m)m(t,x,u)pt(xmmo(m)} (29)

In (29) proceeding to the limit with At —0 and considering (12), we obtain equation (9).
Boundary condition (10) and the expression for J° arise from (3), (5). Theorem 1 is proved.

Affirmation 1. Let
f()=Ftx +B(thr, 1()=D1(t). Po(x)=N{x uo.Io}, (30)

h()=Ho(t)x, + k%Hk(t)xf , 31)

k
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wlt)=Efx |25, (32)
e )=E, |20}, k=LN, (33)
()= E{[xt — )]l )T 2 G4
Nz t) = E{ [ =l O][x,, - o, ,t)ﬂz{,}, (35)
o (e 1)= E{[xt ~ e, ~ e O |25 (36)
L7yt {[x — 7t ][x — ulz, t)]T ‘zé} (37)
k=LN, i=2N, i>k. (38)
Then, for a posteriori density (4) property

P (x)=N{x; 4(t) T(0); (39)

The density parameters are specified by the equations
du(t) = [F(t)ult) + Bt Jot+ HG (R )z, (40)
du(zy . t) = Hy (R (0, (41)
dr(t)/dt=F©)r(t)+ TE)F " (t)-Hg R )Ho(t)+ Q) (42)
ALy (7, t)/dt = —H R (OH, (t), (43)
d Ty (i, t)/dt = F(O)g (7, 1) — Hg R (), (1) (44)
drkl(fk Ti )/dt =-H ;— ( )R l(t)ﬁl (t) (45)

where

dz(t)= dz(t)—[Ho(t)y(t)— J_%H (e ,t)}dt, (46)
Ho(t) = Ho 0r()+ j%_lH SO (;.0), 47)
Hy (t)=H, () (7, t )+J§kH ()Fij(Tk’Tj’t)- (48)

This relation arises from [4].

Lemma 2. A sufficient coordinates vector is an optimal in a mean-root-square sense estimate y(t)

of the process X, i.e. 4 [Zg]z u(t), which is a Markov diffusion process with the characteristics (see

)
alt, 1) =F(t)u+Blth, Dt u)=Hg OR™M)Ho(). (49)
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Proof. Since F(t), according to (42), does not depend on z,, then it follows from (39), that
A :,u(t). According to [6], process Z;, a differential of which is given by (46), and for

which Zt = (Zt R ), is the Wiener process with

E {Zt A

t

} [R(s)ds. (50)
0

Then, Markov property ,u(t) and formulae (49) arise from (41), (50).

Affirmation 2. The coupled processes {x,; u(t)} are a Markov diffusion process.

Proof- The statement is proved by (1), (31), (41) with regard to Lemma 2.

Remark 2. Since the conditions of Theorem 1 are satisfied for 4, = x(t), then S(t,A)=S(t, «), and
it follows from (3)-(5), that

muin{asgt’u)+Lt [S(t, u)]+ E{ Alt, xt,utjzé}}zo, (51)
S(t,u),_, = EB(T, X1 )25 | (52)
sl 0 ) b ot 7200 | 53

where a(t, ) and D(t, z) have the form (49).
Substitution of EHZB} for E{|/1t = l} results from F’ measurability of the process y(t) (see (41),

(46), (50)).

4. Main results
Theorem 2.
Let

A() ZXTt I—(t)xt + UtT N (t)ut > b() = X¥ StXr, (54)

where L(t), N(t), S; are symmetric matrices, and L(t)>0, S; >0, N(t)>0. Hence, the Bellman
equation (51) and boundary condition (52) take the following form

m {asgt”)+[p() BT asézﬂh%t{ﬁg(t)R—l(t)ﬁo(t)—aZS(t'“)}

ou’ (55)
"L+ N U+ [LOMO] =0,
S(t, u),_ =tr[StI(T)]+ 4" Sy (56)
Proof. From (54), with regard to (37) and F,? -measurability u, , we obtain
E{A( XU, 2b )= BB L, +u Lihaz5 {= T LO[25 fuf Ltk = )

= 14 L) + e[ LEODE)]+ 0 Lt

Analogous
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Eb(T X )20 = EXESyxe{2d = 4 (D)5 7uT)+tr[s;T(T)) (58)

Substitution of (49), (53), (57), in (51) results in (55), and substitution of (58) in (52) leads to (56).
The theorem is proved.
From now on, the t -derivative will be identified by the point at the top.

Theorem 3 (The separation theorem). The optimal control u’ has the form
U =-N"(0)B" (U)S(t)u(t), (59)
where an optimal in a mean-root-square sense estimate (t) of the state vector X, is defined by filter

equations (40)-(48), whereu, = uto, the matrix S(t) is defined by matrix differential Riccati equation

S(t)=—F T (t)S(t)-S(t)F(t)+S(t)BE)N ()BT (t)S(t)- L(t) (60)

with boundary equation

S(T)=Sy, (61)

and the smallest value J° of quality criterion has the following form
= )8t s +tefs, (1) L O oo R O 0s 0t (62
Proof. Taking u -derivative from the left-hand side of (55), we obtain the equation to compute the
optimal control
BT (t)%/’f‘h 2N(t)u =0. (63)

Hence, we obtain the expression for optimal control by means of Bellman function in the following
form

u¢ =—(1/2N ()BT (t)eS (t, 1)/ o], (64)

Substituting (64) in (55), we obtain a second-order partial equation for Bellman function in the
following form

os(t, ) " F(t)as(g;’l#) _%

+yTL(t),u+tr[L(t)F(t)]+%tr[ﬁg(t)R1(t)l:|0(t)M} _o.

(55('[’/1)JT B{ON (t)8" (t)as(tv#)+
o (65)

We solve the equation (65) by using the separation of variables method in the form

S(t, ) =1(t)+ " S(t)es, (66)

where 1(t) -unknown scalar function, and S(t) - unknown matrix (nxn)-function with imposed
symmetry condition. Thereafter

% 1) TS0 %};ﬂ) _oS(thu, C 2;(;”) = 25(t). 67)
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As long as S(t) is imposed with symmetry condition, then, with regard to (67) and the fact that
b=b" = (]/2)(b+bT ) is true for scalar b, we obtain
oslt,
B L S PR O R €

Substituting (67), (68) in (65), we have the following formula

[(t)+ 4" SWu+ u" FT (O + 4" SOF () — " SEBEON ()BT (1)S(t)se +

+ "L+ rLONO)]+ AT QR0 0)s(t)] =0

Next, according to the method of separation of variables, we set the coefficients in (69) equal,

provided powers z are equal. Then, we have the equation (60) forS(t) , and for I(t) we obtain the
following equation

(69)

i(t) = ~tr[LONE)]-tr[A7 OR0)F, 1)) - (70)
According to (66)
S(t, 42) e = T)+ 47 S(T)pe (71)

The boundary condition (61) for equation (60) follows from comparison (56) and (71), while the
boundary condition for (70) has the form

I(t) _r =tr[SyI(T)]. (72)
According to Theorem 1,J° = S(ty, A(ty ), and A = u, thus, it follows from (66), that
3% =1(to)+ 4" (to)S (to Jualto ) (73)
The solution to equation (70) with boundary condition (72) has the form
I(t) = tr[s,T(T)] + ftr[L(T)r(T)]dT " ftr[ﬁg (OR™(0)F, () (0 )iz (74)

Whent =t, substitution of (74) in (73) results in (62). Applying (67) in (64), we get (59).

5. Conclusions

Comparing results of Theorem 3 with separation Theorem for memoryless sources in the classical
case [1], we come to the conclusion that the expression of optimal control has the same form (59). The
difference is the following: in the classical case, Kalman filter estimates the state vector, while in the
case considered above, it is the filter (40)-(48), that estimates not only filtering parameters ,u(t) for the

current value of state vector X,, but also estimates interpolation sz, ,t) for previous values of the

state vector X, , k=LN. Thus, the expression for smallest values of quality criterion J° changes.
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